Merge pull request #115 from iclementine/pwg

Add Parallel WaveGan and example
This commit is contained in:
Hui Zhang 2021-07-01 04:04:52 -05:00 committed by GitHub
commit 68e9a84ada
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
41 changed files with 4243 additions and 338 deletions

2
.gitignore vendored
View File

@ -142,3 +142,5 @@ dmypy.json
*.swp *.swp
runs runs
syn_audios syn_audios
exp/
dump/

View File

@ -1,10 +1,11 @@
repos:
- repo: https://github.com/PaddlePaddle/mirrors-yapf.git - repo: https://github.com/PaddlePaddle/mirrors-yapf.git
sha: 0d79c0c469bab64f7229c9aca2b1186ef47f0e37 rev: 0d79c0c469bab64f7229c9aca2b1186ef47f0e37
hooks: hooks:
- id: yapf - id: yapf
files: \.py$ files: \.py$
- repo: https://github.com/pre-commit/pre-commit-hooks - repo: https://github.com/pre-commit/pre-commit-hooks
sha: a11d9314b22d8f8c7556443875b731ef05965464 rev: a11d9314b22d8f8c7556443875b731ef05965464
hooks: hooks:
- id: check-merge-conflict - id: check-merge-conflict
- id: check-symlinks - id: check-symlinks
@ -15,7 +16,7 @@
- id: trailing-whitespace - id: trailing-whitespace
files: \.md$ files: \.md$
- repo: https://github.com/Lucas-C/pre-commit-hooks - repo: https://github.com/Lucas-C/pre-commit-hooks
sha: v1.0.1 rev: v1.0.1
hooks: hooks:
- id: forbid-crlf - id: forbid-crlf
files: \.md$ files: \.md$

View File

@ -0,0 +1,110 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
class Clip(object):
"""Collate functor for training vocoders.
"""
def __init__(
self,
batch_max_steps=20480,
hop_size=256,
aux_context_window=0, ):
"""Initialize customized collater for DataLoader.
Args:
batch_max_steps (int): The maximum length of input signal in batch.
hop_size (int): Hop size of auxiliary features.
aux_context_window (int): Context window size for auxiliary feature conv.
"""
if batch_max_steps % hop_size != 0:
batch_max_steps += -(batch_max_steps % hop_size)
assert batch_max_steps % hop_size == 0
self.batch_max_steps = batch_max_steps
self.batch_max_frames = batch_max_steps // hop_size
self.hop_size = hop_size
self.aux_context_window = aux_context_window
# set useful values in random cutting
self.start_offset = aux_context_window
self.end_offset = -(self.batch_max_frames + aux_context_window)
self.mel_threshold = self.batch_max_frames + 2 * aux_context_window
def __call__(self, examples):
"""Convert into batch tensors.
Args:
batch (list): list of tuple of the pair of audio and features. Audio shape
(T, ), features shape(T', C).
Returns:
Tensor: Auxiliary feature batch (B, C, T'), where
T = (T' - 2 * aux_context_window) * hop_size.
Tensor: Target signal batch (B, 1, T).
"""
# check length
examples = [
self._adjust_length(b['wave'], b['feats']) for b in examples
if b['feats'].shape[0] > self.mel_threshold
]
xs, cs = [b[0] for b in examples], [b[1] for b in examples]
# make batch with random cut
c_lengths = [c.shape[0] for c in cs]
start_frames = np.array([
np.random.randint(self.start_offset, cl + self.end_offset)
for cl in c_lengths
])
x_starts = start_frames * self.hop_size
x_ends = x_starts + self.batch_max_steps
c_starts = start_frames - self.aux_context_window
c_ends = start_frames + self.batch_max_frames + self.aux_context_window
y_batch = np.stack(
[x[start:end] for x, start, end in zip(xs, x_starts, x_ends)])
c_batch = np.stack(
[c[start:end] for c, start, end in zip(cs, c_starts, c_ends)])
# convert each batch to tensor, asuume that each item in batch has the same length
y_batch = paddle.to_tensor(
y_batch, dtype=paddle.float32).unsqueeze(1) # (B, 1, T)
c_batch = paddle.to_tensor(
c_batch, dtype=paddle.float32).transpose([0, 2, 1]) # (B, C, T')
return y_batch, c_batch
def _adjust_length(self, x, c):
"""Adjust the audio and feature lengths.
Note:
Basically we assume that the length of x and c are adjusted
through preprocessing stage, but if we use other library processed
features, this process will be needed.
"""
if len(x) < c.shape[1] * self.hop_size:
x = np.pad(x, (0, c.shape[1] * self.hop_size - len(x)),
mode="edge")
# check the legnth is valid
assert len(x) == c.shape[
0] * self.hop_size, f"wave length: ({len(x)}), mel length: ({c.shape[0]})"
return x, c

View File

@ -0,0 +1,110 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Calculate statistics of feature files."""
import argparse
import logging
import os
import numpy as np
import yaml
import json
import jsonlines
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from parakeet.datasets.data_table import DataTable
from parakeet.utils.h5_utils import read_hdf5
from parakeet.utils.h5_utils import write_hdf5
from config import get_cfg_default
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(
description="Compute mean and variance of dumped raw features.")
parser.add_argument(
"--metadata", type=str, help="json file with id and file paths ")
parser.add_argument(
"--field-name",
type=str,
help="name of the field to compute statistics for.")
parser.add_argument(
"--config", type=str, help="yaml format configuration file.")
parser.add_argument(
"--dumpdir",
type=str,
help="directory to save statistics. if not provided, "
"stats will be saved in the above root directory. (default=None)")
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)")
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
logging.warning('Skip DEBUG/INFO messages')
config = get_cfg_default()
# load config
if args.config:
config.merge_from_file(args.config)
# check directory existence
if args.dumpdir is None:
args.dumpdir = os.path.dirname(args.metadata)
if not os.path.exists(args.dumpdir):
os.makedirs(args.dumpdir)
with jsonlines.open(args.metadata, 'r') as reader:
metadata = list(reader)
dataset = DataTable(
metadata,
fields=[args.field_name],
converters={args.field_name: np.load}, )
logging.info(f"The number of files = {len(dataset)}.")
# calculate statistics
scaler = StandardScaler()
for datum in tqdm(dataset):
# StandardScalar supports (*, num_features) by default
scaler.partial_fit(datum[args.field_name])
stats = np.stack([scaler.mean_, scaler.scale_], axis=0)
np.save(
os.path.join(args.dumpdir, "stats.npy"),
stats.astype(np.float32),
allow_pickle=False)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,128 @@
# This is the hyperparameter configuration file for Parallel WaveGAN.
# Please make sure this is adjusted for the CSMSC dataset. If you want to
# apply to the other dataset, you might need to carefully change some parameters.
# This configuration requires 12 GB GPU memory and takes ~3 days on RTX TITAN.
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
sr: 24000 # Sampling rate.
n_fft: 2048 # FFT size.
hop_length: 300 # Hop size.
win_length: 1200 # Window length.
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
n_mels: 80 # Number of mel basis.
fmin: 80 # Minimum freq in mel basis calculation.
fmax: 7600 # Maximum frequency in mel basis calculation.
# global_gain_scale: 1.0 # Will be multiplied to all of waveform.
trim_silence: false # Whether to trim the start and end of silence.
top_db: 60 # Need to tune carefully if the recording is not good.
trim_frame_length: 2048 # Frame size in trimming.(in samples)
trim_hop_length: 512 # Hop size in trimming.(in samples)
###########################################################
# GENERATOR NETWORK ARCHITECTURE SETTING #
###########################################################
generator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_size: 3 # Kernel size of dilated convolution.
layers: 30 # Number of residual block layers.
stacks: 3 # Number of stacks i.e., dilation cycles.
residual_channels: 64 # Number of channels in residual conv.
gate_channels: 128 # Number of channels in gated conv.
skip_channels: 64 # Number of channels in skip conv.
aux_channels: 80 # Number of channels for auxiliary feature conv.
# Must be the same as num_mels.
aux_context_window: 2 # Context window size for auxiliary feature.
# If set to 2, previous 2 and future 2 frames will be considered.
dropout: 0.0 # Dropout rate. 0.0 means no dropout applied.
bias: true # use bias in residual blocks
use_weight_norm: true # Whether to use weight norm.
# If set to true, it will be applied to all of the conv layers.
use_causal_conv: false # use causal conv in residual blocks and upsample layers
# upsample_net: "ConvInUpsampleNetwork" # Upsampling network architecture.
upsample_scales: [4, 5, 3, 5] # Upsampling scales. Prodcut of these must be the same as hop size.
interpolate_mode: "nearest" # upsample net interpolate mode
freq_axis_kernel_size: 1 # upsamling net: convolution kernel size in frequencey axis
nonlinear_activation: null
nonlinear_activation_params: {}
###########################################################
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
###########################################################
discriminator_params:
in_channels: 1 # Number of input channels.
out_channels: 1 # Number of output channels.
kernel_size: 3 # Number of output channels.
layers: 10 # Number of conv layers.
conv_channels: 64 # Number of chnn layers.
bias: true # Whether to use bias parameter in conv.
use_weight_norm: true # Whether to use weight norm.
# If set to true, it will be applied to all of the conv layers.
nonlinear_activation: "LeakyReLU" # Nonlinear function after each conv.
nonlinear_activation_params: # Nonlinear function parameters
negative_slope: 0.2 # Alpha in LeakyReLU.
###########################################################
# STFT LOSS SETTING #
###########################################################
stft_loss_params:
fft_sizes: [1024, 2048, 512] # List of FFT size for STFT-based loss.
hop_sizes: [120, 240, 50] # List of hop size for STFT-based loss
win_lengths: [600, 1200, 240] # List of window length for STFT-based loss.
window: "hann" # Window function for STFT-based loss
###########################################################
# ADVERSARIAL LOSS SETTING #
###########################################################
lambda_adv: 4.0 # Loss balancing coefficient.
###########################################################
# DATA LOADER SETTING #
###########################################################
batch_size: 6 # Batch size.
batch_max_steps: 25500 # Length of each audio in batch. Make sure dividable by hop_size.
pin_memory: true # Whether to pin memory in Pytorch DataLoader.
num_workers: 4 # Number of workers in Pytorch DataLoader.
remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
###########################################################
# OPTIMIZER & SCHEDULER SETTING #
###########################################################
generator_optimizer_params:
epsilon: 1.0e-6 # Generator's epsilon.
weight_decay: 0.0 # Generator's weight decay coefficient.
generator_scheduler_params:
learning_rate: 0.0001 # Generator's learning rate.
step_size: 200000 # Generator's scheduler step size.
gamma: 0.5 # Generator's scheduler gamma.
# At each step size, lr will be multiplied by this parameter.
generator_grad_norm: 10 # Generator's gradient norm.
discriminator_optimizer_params:
epsilon: 1.0e-6 # Discriminator's epsilon.
weight_decay: 0.0 # Discriminator's weight decay coefficient.
discriminator_scheduler_params:
learning_rate: 0.00005 # Discriminator's learning rate.
step_size: 200000 # Discriminator's scheduler step size.
gamma: 0.5 # Discriminator's scheduler gamma.
# At each step size, lr will be multiplied by this parameter.
discriminator_grad_norm: 1 # Discriminator's gradient norm.
###########################################################
# INTERVAL SETTING #
###########################################################
discriminator_train_start_steps: 100000 # Number of steps to start to train discriminator.
train_max_steps: 400000 # Number of training steps.
save_interval_steps: 5000 # Interval steps to save checkpoint.
eval_interval_steps: 1000 # Interval steps to evaluate the network.
###########################################################
# OTHER SETTING #
###########################################################
num_save_intermediate_results: 4 # Number of results to be saved as intermediate results.
num_snapshots: 10 # max number of snapshots to keep while training
seed: 42 # random seed for paddle, random, and np.random

View File

@ -0,0 +1,25 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import yaml
from yacs.config import CfgNode as Configuration
with open("conf/default.yaml", 'rt') as f:
_C = yaml.safe_load(f)
_C = Configuration(_C)
def get_cfg_default():
config = _C.clone()
return config

View File

@ -0,0 +1,145 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Normalize feature files and dump them."""
import argparse
import logging
import os
from operator import itemgetter
from pathlib import Path
import numpy as np
import yaml
import jsonlines
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from parakeet.datasets.data_table import DataTable
from config import get_cfg_default
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
)
parser.add_argument(
"--metadata",
type=str,
required=True,
help="directory including feature files to be normalized. "
"you need to specify either *-scp or rootdir.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump normalized feature files.")
parser.add_argument(
"--stats", type=str, required=True, help="statistics file.")
parser.add_argument(
"--skip-wav-copy",
default=False,
action="store_true",
help="whether to skip the copy of wav files.")
parser.add_argument(
"--config", type=str, help="yaml format configuration file.")
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)")
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
)
logging.warning('Skip DEBUG/INFO messages')
# load config
config = get_cfg_default()
if args.config:
config.merge_from_file(args.config)
# check directory existence
dumpdir = Path(args.dumpdir).resolve()
dumpdir.mkdir(parents=True, exist_ok=True)
# get dataset
with jsonlines.open(args.metadata, 'r') as reader:
metadata = list(reader)
dataset = DataTable(
metadata,
fields=["utt_id", "wave", "feats"],
converters={
'utt_id': None,
'wave': None if args.skip_wav_copy else np.load,
'feats': np.load,
})
logging.info(f"The number of files = {len(dataset)}.")
# restore scaler
scaler = StandardScaler()
scaler.mean_ = np.load(args.stats)[0]
scaler.scale_ = np.load(args.stats)[1]
# from version 0.23.0, this information is needed
scaler.n_features_in_ = scaler.mean_.shape[0]
# process each file
output_metadata = []
for item in tqdm(dataset):
utt_id = item['utt_id']
wave = item['wave']
mel = item['feats']
# normalize
mel = scaler.transform(mel)
# save
mel_path = dumpdir / f"{utt_id}-feats.npy"
np.save(mel_path, mel.astype(np.float32), allow_pickle=False)
if not args.skip_wav_copy:
wav_path = dumpdir / f"{utt_id}-wave.npy"
np.save(wav_path, wave.astype(np.float32), allow_pickle=False)
else:
wav_path = wave
output_metadata.append({
'utt_id': utt_id,
'wave': str(wav_path),
'feats': str(mel_path),
})
output_metadata.sort(key=itemgetter('utt_id'))
output_metadata_path = Path(args.dumpdir) / "metadata.jsonl"
with jsonlines.open(output_metadata_path, 'w') as writer:
for item in output_metadata:
writer.write(item)
logging.info(f"metadata dumped into {output_metadata_path}")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,287 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Dict, Any
import soundfile as sf
import librosa
import numpy as np
import argparse
import yaml
import json
import jsonlines
import concurrent.futures
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from pathlib import Path
import tqdm
from operator import itemgetter
from praatio import tgio
import logging
from config import get_cfg_default
def logmelfilterbank(audio,
sr,
n_fft=1024,
hop_length=256,
win_length=None,
window="hann",
n_mels=80,
fmin=None,
fmax=None,
eps=1e-10):
"""Compute log-Mel filterbank feature.
Parameters
----------
audio : ndarray
Audio signal (T,).
sr : int
Sampling rate.
n_fft : int
FFT size. (Default value = 1024)
hop_length : int
Hop size. (Default value = 256)
win_length : int
Window length. If set to None, it will be the same as fft_size. (Default value = None)
window : str
Window function type. (Default value = "hann")
n_mels : int
Number of mel basis. (Default value = 80)
fmin : int
Minimum frequency in mel basis calculation. (Default value = None)
fmax : int
Maximum frequency in mel basis calculation. (Default value = None)
eps : float
Epsilon value to avoid inf in log calculation. (Default value = 1e-10)
Returns
-------
np.ndarray
Log Mel filterbank feature (#frames, num_mels).
"""
# get amplitude spectrogram
x_stft = librosa.stft(
audio,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=window,
pad_mode="reflect")
spc = np.abs(x_stft) # (#bins, #frames,)
# get mel basis
fmin = 0 if fmin is None else fmin
fmax = sr / 2 if fmax is None else fmax
mel_basis = librosa.filters.mel(sr, n_fft, n_mels, fmin, fmax)
return np.log10(np.maximum(eps, np.dot(mel_basis, spc)))
def process_sentence(config: Dict[str, Any],
fp: Path,
alignment_fp: Path,
output_dir: Path):
utt_id = fp.stem
# reading
y, sr = librosa.load(fp, sr=config.sr) # resampling may occur
assert len(y.shape) == 1, f"{utt_id} is not a mono-channel audio."
assert np.abs(y).max(
) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM."
duration = librosa.get_duration(y, sr=sr)
# trim according to the alignment file
alignment = tgio.openTextgrid(alignment_fp)
intervals = alignment.tierDict[alignment.tierNameList[0]].entryList
first, last = intervals[0], intervals[-1]
start = 0
end = last.end
if first.label == "sil" and first.end < duration:
start = first.end
else:
logging.warning(
f" There is something wrong with the fisrt interval {first} in utterance: {utt_id}"
)
if last.label == "sil" and last.start < duration:
end = last.start
else:
end = duration
logging.warning(
f" There is something wrong with the last interval {last} in utterance: {utt_id}"
)
# silence trimmed
start, end = librosa.time_to_samples([first.end, last.start], sr=sr)
y = y[start:end]
# energy based silence trimming
if config.trim_silence:
y, _ = librosa.effects.trim(
y,
top_db=config.top_db,
frame_length=config.trim_frame_length,
hop_length=config.trim_hop_length)
logmel = logmelfilterbank(
y,
sr=sr,
n_fft=config.n_fft,
window=config.window,
win_length=config.win_length,
hop_length=config.hop_length,
n_mels=config.n_mels,
fmin=config.fmin,
fmax=config.fmax)
# adjust time to make num_samples == num_frames * hop_length
num_frames = logmel.shape[1]
if y.size < num_frames * config.hop_length:
y = np.pad(y, (0, num_frames * config.hop_length - y.size),
mode="reflect")
else:
y = y[:num_frames * config.hop_length]
num_sample = y.shape[0]
mel_path = output_dir / (utt_id + "_feats.npy")
wav_path = output_dir / (utt_id + "_wave.npy")
np.save(wav_path, y) # (num_samples, )
np.save(mel_path, logmel.T) # (num_frames, n_mels)
record = {
"utt_id": utt_id,
"num_samples": num_sample,
"num_frames": num_frames,
"feats": str(mel_path.resolve()),
"wave": str(wav_path.resolve()),
}
return record
def process_sentences(config,
fps: List[Path],
alignment_fps: List[Path],
output_dir: Path,
nprocs: int=1):
if nprocs == 1:
results = []
for fp, alignment_fp in tqdm.tqdm(zip(fps, alignment_fps)):
results.append(
process_sentence(config, fp, alignment_fp, output_dir))
else:
with ThreadPoolExecutor(nprocs) as pool:
futures = []
with tqdm.tqdm(total=len(fps)) as progress:
for fp, alignment_fp in zip(fps, alignment_fps):
future = pool.submit(process_sentence, config, fp,
alignment_fp, output_dir)
future.add_done_callback(lambda p: progress.update())
futures.append(future)
results = []
for ft in futures:
results.append(ft.result())
results.sort(key=itemgetter("utt_id"))
with jsonlines.open(output_dir / "metadata.jsonl", 'w') as writer:
for item in results:
writer.write(item)
print("Done")
def main():
# parse config and args
parser = argparse.ArgumentParser(
description="Preprocess audio and then extract features (See detail in parallel_wavegan/bin/preprocess.py)."
)
parser.add_argument(
"--rootdir",
default=None,
type=str,
help="directory including wav files. you need to specify either scp or rootdir."
)
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump feature files.")
parser.add_argument(
"--config", type=str, help="yaml format configuration file.")
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)")
parser.add_argument(
"--num_cpu", type=int, default=1, help="number of process.")
args = parser.parse_args()
C = get_cfg_default()
if args.config:
C.merge_from_file(args.config)
C.freeze()
if args.verbose > 1:
print(vars(args))
print(C)
root_dir = Path(args.rootdir).expanduser()
dumpdir = Path(args.dumpdir).expanduser()
dumpdir.mkdir(parents=True, exist_ok=True)
wav_files = sorted(list((root_dir / "Wave").rglob("*.wav")))
alignment_files = sorted(
list((root_dir / "PhoneLabeling").rglob("*.interval")))
# split data into 3 sections
num_train = 9800
num_dev = 100
train_wav_files = wav_files[:num_train]
dev_wav_files = wav_files[num_train:num_train + num_dev]
test_wav_files = wav_files[num_train + num_dev:]
train_alignment_files = alignment_files[:num_train]
dev_alignment_files = alignment_files[num_train:num_train + num_dev]
test_alignment_files = alignment_files[num_train + num_dev:]
train_dump_dir = dumpdir / "train" / "raw"
train_dump_dir.mkdir(parents=True, exist_ok=True)
dev_dump_dir = dumpdir / "dev" / "raw"
dev_dump_dir.mkdir(parents=True, exist_ok=True)
test_dump_dir = dumpdir / "test" / "raw"
test_dump_dir.mkdir(parents=True, exist_ok=True)
# process for the 3 sections
process_sentences(
C,
train_wav_files,
train_alignment_files,
train_dump_dir,
nprocs=args.num_cpu)
process_sentences(
C,
dev_wav_files,
dev_alignment_files,
dev_dump_dir,
nprocs=args.num_cpu)
process_sentences(
C,
test_wav_files,
test_alignment_files,
test_dump_dir,
nprocs=args.num_cpu)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,184 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Dict
import paddle
from paddle.nn import Layer
from paddle.optimizer import Optimizer
from paddle.optimizer.lr import LRScheduler
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from timer import timer
from parakeet.datasets.data_table import DataTable
from parakeet.training.updaters.standard_updater import StandardUpdater, UpdaterState
from parakeet.training.extensions.evaluator import StandardEvaluator
from parakeet.training.trainer import Trainer
from parakeet.training.reporter import report
from parakeet.models.parallel_wavegan import PWGGenerator, PWGDiscriminator
from parakeet.modules.stft_loss import MultiResolutionSTFTLoss
from parakeet.utils.profile import synchronize
class PWGUpdater(StandardUpdater):
def __init__(
self,
models: Dict[str, Layer],
optimizers: Dict[str, Optimizer],
criterions: Dict[str, Layer],
schedulers: Dict[str, LRScheduler],
dataloader: DataLoader,
discriminator_train_start_steps: int,
lambda_adv: float, ):
self.models = models
self.generator: Layer = models['generator']
self.discriminator: Layer = models['discriminator']
self.optimizers = optimizers
self.optimizer_g: Optimizer = optimizers['generator']
self.optimizer_d: Optimizer = optimizers['discriminator']
self.criterions = criterions
self.criterion_stft = criterions['stft']
self.criterion_mse = criterions['mse']
self.schedulers = schedulers
self.scheduler_g = schedulers['generator']
self.scheduler_d = schedulers['discriminator']
self.dataloader = dataloader
self.discriminator_train_start_steps = discriminator_train_start_steps
self.lambda_adv = lambda_adv
self.state = UpdaterState(iteration=0, epoch=0)
self.train_iterator = iter(self.dataloader)
def update_core(self, batch):
# parse batch
wav, mel = batch
# Generator
noise = paddle.randn(wav.shape)
with timer() as t:
wav_ = self.generator(noise, mel)
logging.debug(f"Generator takes {t.elapse}s.")
## Multi-resolution stft loss
with timer() as t:
sc_loss, mag_loss = self.criterion_stft(
wav_.squeeze(1), wav.squeeze(1))
logging.debug(f"Multi-resolution STFT loss takes {t.elapse}s.")
report("train/spectral_convergence_loss", float(sc_loss))
report("train/log_stft_magnitude_loss", float(mag_loss))
gen_loss = sc_loss + mag_loss
## Adversarial loss
if self.state.iteration > self.discriminator_train_start_steps:
with timer() as t:
p_ = self.discriminator(wav_)
adv_loss = self.criterion_mse(p_, paddle.ones_like(p_))
logging.debug(
f"Discriminator and adversarial loss takes {t.elapse}s")
report("train/adversarial_loss", float(adv_loss))
gen_loss += self.lambda_adv * adv_loss
report("train/generator_loss", float(gen_loss))
with timer() as t:
self.optimizer_g.clear_grad()
gen_loss.backward()
logging.debug(f"Backward takes {t.elapse}s.")
with timer() as t:
self.optimizer_g.step()
self.scheduler_g.step()
logging.debug(f"Update takes {t.elapse}s.")
# Disctiminator
if self.state.iteration > self.discriminator_train_start_steps:
with paddle.no_grad():
wav_ = self.generator(noise, mel)
p = self.discriminator(wav)
p_ = self.discriminator(wav_.detach())
real_loss = self.criterion_mse(p, paddle.ones_like(p))
fake_loss = self.criterion_mse(p_, paddle.zeros_like(p_))
report("train/real_loss", float(real_loss))
report("train/fake_loss", float(fake_loss))
dis_loss = real_loss + fake_loss
report("train/discriminator_loss", float(dis_loss))
self.optimizer_d.clear_grad()
dis_loss.backward()
self.optimizer_d.step()
self.scheduler_d.step()
class PWGEvaluator(StandardEvaluator):
def __init__(self, models, criterions, dataloader, lambda_adv):
self.models = models
self.generator = models['generator']
self.discriminator = models['discriminator']
self.criterions = criterions
self.criterion_stft = criterions['stft']
self.criterion_mse = criterions['mse']
self.dataloader = dataloader
self.lambda_adv = lambda_adv
def evaluate_core(self, batch):
logging.debug("Evaluate: ")
wav, mel = batch
noise = paddle.randn(wav.shape)
with timer() as t:
wav_ = self.generator(noise, mel)
logging.debug(f"Generator takes {t.elapse}s")
## Adversarial loss
with timer() as t:
p_ = self.discriminator(wav_)
adv_loss = self.criterion_mse(p_, paddle.ones_like(p_))
logging.debug(
f"Discriminator and adversarial loss takes {t.elapse}s")
report("eval/adversarial_loss", float(adv_loss))
gen_loss = self.lambda_adv * adv_loss
# stft loss
with timer() as t:
sc_loss, mag_loss = self.criterion_stft(
wav_.squeeze(1), wav.squeeze(1))
logging.debug(f"Multi-resolution STFT loss takes {t.elapse}s")
report("eval/spectral_convergence_loss", float(sc_loss))
report("eval/log_stft_magnitude_loss", float(mag_loss))
gen_loss += sc_loss + mag_loss
report("eval/generator_loss", float(gen_loss))
# Disctiminator
p = self.discriminator(wav)
real_loss = self.criterion_mse(p, paddle.ones_like(p))
fake_loss = self.criterion_mse(p_, paddle.zeros_like(p_))
report("eval/real_loss", float(real_loss))
report("eval/fake_loss", float(fake_loss))
dis_loss = real_loss + fake_loss
report("eval/discriminator_loss", float(dis_loss))

View File

@ -0,0 +1,93 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from timer import timer
import logging
import argparse
from pathlib import Path
import yaml
import jsonlines
import paddle
import numpy as np
import soundfile as sf
from paddle import distributed as dist
from parakeet.datasets.data_table import DataTable
from parakeet.models.parallel_wavegan import PWGGenerator
from config import get_cfg_default
parser = argparse.ArgumentParser(
description="synthesize with parallel wavegan.")
parser.add_argument(
"--config", type=str, help="config file to overwrite default config")
parser.add_argument("--checkpoint", type=str, help="snapshot to load")
parser.add_argument("--test-metadata", type=str, help="dev data")
parser.add_argument("--output-dir", type=str, help="output dir")
parser.add_argument("--device", type=str, default="gpu", help="device to run")
parser.add_argument("--verbose", type=int, default=1, help="verbose")
args = parser.parse_args()
config = get_cfg_default()
if args.config:
config.merge_from_file(args.config)
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
print(
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
)
paddle.set_device(args.device)
generator = PWGGenerator(**config["generator_params"])
state_dict = paddle.load(args.checkpoint)
generator.set_state_dict(state_dict["generator_params"])
generator.remove_weight_norm()
generator.eval()
with jsonlines.open(args.test_metadata, 'r') as reader:
metadata = list(reader)
test_dataset = DataTable(
metadata,
fields=['utt_id', 'feats'],
converters={
'utt_id': None,
'feats': np.load,
})
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
N = 0
T = 0
for example in test_dataset:
utt_id = example['utt_id']
mel = example['feats']
mel = paddle.to_tensor(mel) # (T, C)
with timer() as t:
wav = generator.inference(c=mel)
wav = wav.numpy()
N += wav.size
T += t.elapse
speed = wav.size / t.elapse
print(
f"{utt_id}, mel: {mel.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {config.sr / speed}."
)
sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=config.sr)
print(f"generation speed: {N / T}Hz, RTF: {config.sr / (N / T) }")

View File

@ -0,0 +1,246 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import logging
import argparse
import dataclasses
from pathlib import Path
import yaml
import jsonlines
import paddle
import numpy as np
from paddle import nn
from paddle.nn import functional as F
from paddle import distributed as dist
from paddle.io import DataLoader, DistributedBatchSampler
from paddle.optimizer import Adam # No RAdaom
from paddle.optimizer.lr import StepDecay
from paddle import DataParallel
from visualdl import LogWriter
from parakeet.datasets.data_table import DataTable
from parakeet.training.updater import UpdaterBase
from parakeet.training.trainer import Trainer
from parakeet.training.reporter import report
from parakeet.training import extension
from parakeet.training.extensions.snapshot import Snapshot
from parakeet.training.extensions.visualizer import VisualDL
from parakeet.models.parallel_wavegan import PWGGenerator, PWGDiscriminator
from parakeet.modules.stft_loss import MultiResolutionSTFTLoss
from parakeet.training.seeding import seed_everything
from batch_fn import Clip
from config import get_cfg_default
from pwg_updater import PWGUpdater, PWGEvaluator
def train_sp(args, config):
# decides device type and whether to run in parallel
# setup running environment correctly
if not paddle.is_compiled_with_cuda:
paddle.set_device("cpu")
else:
paddle.set_device("gpu")
world_size = paddle.distributed.get_world_size()
if world_size > 1:
paddle.distributed.init_parallel_env()
# set the random seed, it is a must for multiprocess training
seed_everything(config.seed)
print(
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
)
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
# construct dataset for training and validation
with jsonlines.open(args.train_metadata, 'r') as reader:
train_metadata = list(reader)
train_dataset = DataTable(
data=train_metadata,
fields=["wave", "feats"],
converters={
"wave": np.load,
"feats": np.load,
}, )
with jsonlines.open(args.dev_metadata, 'r') as reader:
dev_metadata = list(reader)
dev_dataset = DataTable(
data=dev_metadata,
fields=["wave", "feats"],
converters={
"wave": np.load,
"feats": np.load,
}, )
# collate function and dataloader
train_sampler = DistributedBatchSampler(
train_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True)
dev_sampler = DistributedBatchSampler(
dev_dataset,
batch_size=config.batch_size,
shuffle=False,
drop_last=False)
print("samplers done!")
train_batch_fn = Clip(
batch_max_steps=config.batch_max_steps,
hop_size=config.hop_length,
aux_context_window=config.generator_params.aux_context_window)
train_dataloader = DataLoader(
train_dataset,
batch_sampler=train_sampler,
collate_fn=train_batch_fn,
num_workers=config.num_workers)
dev_dataloader = DataLoader(
dev_dataset,
batch_sampler=dev_sampler,
collate_fn=train_batch_fn,
num_workers=config.num_workers)
print("dataloaders done!")
generator = PWGGenerator(**config["generator_params"])
discriminator = PWGDiscriminator(**config["discriminator_params"])
if world_size > 1:
generator = DataParallel(generator)
discriminator = DataParallel(discriminator)
print("models done!")
criterion_stft = MultiResolutionSTFTLoss(**config["stft_loss_params"])
criterion_mse = nn.MSELoss()
print("criterions done!")
lr_schedule_g = StepDecay(**config["generator_scheduler_params"])
gradient_clip_g = nn.ClipGradByGlobalNorm(config["generator_grad_norm"])
optimizer_g = Adam(
learning_rate=lr_schedule_g,
grad_clip=gradient_clip_g,
parameters=generator.parameters(),
**config["generator_optimizer_params"])
lr_schedule_d = StepDecay(**config["discriminator_scheduler_params"])
gradient_clip_d = nn.ClipGradByGlobalNorm(config[
"discriminator_grad_norm"])
optimizer_d = Adam(
learning_rate=lr_schedule_d,
grad_clip=gradient_clip_d,
parameters=discriminator.parameters(),
**config["discriminator_optimizer_params"])
print("optimizers done!")
output_dir = Path(args.output_dir)
checkpoint_dir = output_dir / "checkpoints"
if dist.get_rank() == 0:
output_dir.mkdir(parents=True, exist_ok=True)
checkpoint_dir.mkdir(parents=True, exist_ok=True)
with open(output_dir / "config.yaml", 'wt') as f:
f.write(config.dump(default_flow_style=None))
updater = PWGUpdater(
models={
"generator": generator,
"discriminator": discriminator,
},
optimizers={
"generator": optimizer_g,
"discriminator": optimizer_d,
},
criterions={
"stft": criterion_stft,
"mse": criterion_mse,
},
schedulers={
"generator": lr_schedule_g,
"discriminator": lr_schedule_d,
},
dataloader=train_dataloader,
discriminator_train_start_steps=config.discriminator_train_start_steps,
lambda_adv=config.lambda_adv, )
evaluator = PWGEvaluator(
models={
"generator": generator,
"discriminator": discriminator,
},
criterions={
"stft": criterion_stft,
"mse": criterion_mse,
},
dataloader=dev_dataloader,
lambda_adv=config.lambda_adv, )
trainer = Trainer(
updater,
stop_trigger=(config.train_max_steps, "iteration"),
out=output_dir, )
trainer.extend(
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
if dist.get_rank() == 0:
writer = LogWriter(str(trainer.out))
trainer.extend(VisualDL(writer), trigger=(1, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
print(trainer.extensions.keys())
print("Trainer Done!")
trainer.run()
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(description="Train a ParallelWaveGAN "
"model with Baker Mandrin TTS dataset.")
parser.add_argument(
"--config", type=str, help="config file to overwrite default config")
parser.add_argument("--train-metadata", type=str, help="training data")
parser.add_argument("--dev-metadata", type=str, help="dev data")
parser.add_argument("--output-dir", type=str, help="output dir")
parser.add_argument(
"--device", type=str, default="gpu", help="device type to use")
parser.add_argument(
"--nprocs", type=int, default=1, help="number of processes")
parser.add_argument("--verbose", type=int, default=1, help="verbose")
args = parser.parse_args()
if args.device == "cpu" and args.nprocs > 1:
raise RuntimeError("Multiprocess training on CPU is not supported.")
config = get_cfg_default()
if args.config:
config.merge_from_file(args.config)
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
print(
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
)
# dispatch
if args.nprocs > 1:
dist.spawn(train_sp, (args, config), nprocs=args.nprocs)
else:
train_sp(args, config)
if __name__ == "__main__":
main()

View File

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
__version__ = "0.2.0-beta.0" __version__ = "0.0.0"
import logging
from parakeet import audio, data, datasets, frontend, models, modules, training, utils from parakeet import audio, data, datasets, frontend, models, modules, training, utils

View File

@ -0,0 +1,151 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union, Optional, Callable, Tuple, List, Dict, Any
from pathlib import Path
from multiprocessing import Manager
import numpy as np
from paddle.io import Dataset
class DataTable(Dataset):
"""Dataset to load and convert data for general purpose.
Parameters
----------
data : List[Dict[str, Any]]
Metadata, a list of meta datum, each of which is composed of
several fields
fields : List[str], optional
Fields to use, if not specified, all the fields in the data are
used, by default None
converters : Dict[str, Callable], optional
Converters used to process each field, by default None
use_cache : bool, optional
Whether to use cache, by default False
Raises
------
ValueError
If there is some field that does not exist in data.
ValueError
If there is some field in converters that does not exist in fields.
"""
def __init__(self,
data: List[Dict[str, Any]],
fields: List[str]=None,
converters: Dict[str, Callable]=None,
use_cache: bool=False):
# metadata
self.data = data
assert len(data) > 0, "This dataset has no examples"
# peak an example to get existing fields.
first_example = self.data[0]
fields_in_data = first_example.keys()
# check all the requested fields exist
if fields is None:
self.fields = fields_in_data
else:
for field in fields:
if field not in fields_in_data:
raise ValueError(
f"The requested field ({field}) is not found"
f"in the data. Fields in the data is {fields_in_data}")
self.fields = fields
# check converters
if converters is None:
self.converters = {}
else:
for field in converters.keys():
if field not in self.fields:
raise ValueError(
f"The converter has a non existing field ({field})")
self.converters = converters
self.use_cache = use_cache
if use_cache:
self._initialize_cache()
def _initialize_cache(self):
self.manager = Manager()
self.caches = self.manager.list()
self.caches += [None for _ in range(len(self))]
def _get_metadata(self, idx: int) -> Dict[str, Any]:
"""Return a meta-datum given an index."""
return self.data[idx]
def _convert(self, meta_datum: Dict[str, Any]) -> Dict[str, Any]:
"""Convert a meta datum to an example by applying the corresponding
converters to each fields requested.
Parameters
----------
meta_datum : Dict[str, Any]
Meta datum
Returns
-------
Dict[str, Any]
Converted example
"""
example = {}
for field in self.fields:
converter = self.converters.get(field, None)
meta_datum_field = meta_datum[field]
if converter is not None:
converted_field = converter(meta_datum_field)
else:
converted_field = meta_datum_field
example[field] = converted_field
return example
def __getitem__(self, idx: int) -> Dict[str, Any]:
"""Get an example given an index.
Parameters
----------
idx : int
Index of the example to get
Returns
-------
Dict[str, Any]
A converted example
"""
if self.use_cache and self.caches[idx] is not None:
return self.caches[idx]
meta_datum = self._get_metadata(idx)
example = self._convert(meta_datum)
if self.use_cache:
self.caches[idx] = example
return example
def __len__(self) -> int:
"""Returns the size of the dataset.
Returns
-------
int
The length of the dataset
"""
return len(self.data)

View File

@ -0,0 +1,770 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Dict, Any, Union, Optional, Tuple
import numpy as np
import paddle
from paddle import Tensor
from paddle import nn
from paddle.nn import functional as F
class Stretch2D(nn.Layer):
def __init__(self, w_scale: int, h_scale: int, mode: str="nearest"):
"""Strech an image (or image-like object) with some interpolation.
Parameters
----------
w_scale : int
Scalar of width.
h_scale : int
Scalar of the height.
mode : str, optional
Interpolation mode, modes suppored are "nearest", "bilinear",
"trilinear", "bicubic", "linear" and "area",by default "nearest"
For more details about interpolation, see
`paddle.nn.functional.interpolate <https://www.paddlepaddle.org.cn/documentation/docs/en/api/paddle/nn/functional/interpolate_en.html>`_.
"""
super().__init__()
self.w_scale = w_scale
self.h_scale = h_scale
self.mode = mode
def forward(self, x: Tensor) -> Tensor:
"""
Parameters
----------
x : Tensor
Shape (N, C, H, W)
Returns
-------
Tensor
Shape (N, C, H', W'), where ``H'=h_scale * H``, ``W'=w_scale * W``.
The stretched image.
"""
out = F.interpolate(
x, scale_factor=(self.h_scale, self.w_scale), mode=self.mode)
return out
class UpsampleNet(nn.Layer):
"""A Layer to upsample spectrogram by applying consecutive stretch and
convolutions.
Parameters
----------
upsample_scales : List[int]
Upsampling factors for each strech.
nonlinear_activation : Optional[str], optional
Activation after each convolution, by default None
nonlinear_activation_params : Dict[str, Any], optional
Parameters passed to construct the activation, by default {}
interpolate_mode : str, optional
Interpolation mode of the strech, by default "nearest"
freq_axis_kernel_size : int, optional
Convolution kernel size along the frequency axis, by default 1
use_causal_conv : bool, optional
Whether to use causal padding before convolution, by default False
If True, Causal padding is used along the time axis, i.e. padding
amount is ``receptive field - 1`` and 0 for before and after,
respectively.
If False, "same" padding is used along the time axis.
"""
def __init__(self,
upsample_scales: List[int],
nonlinear_activation: Optional[str]=None,
nonlinear_activation_params: Dict[str, Any]={},
interpolate_mode: str="nearest",
freq_axis_kernel_size: int=1,
use_causal_conv: bool=False):
super().__init__()
self.use_causal_conv = use_causal_conv
self.up_layers = nn.LayerList()
for scale in upsample_scales:
stretch = Stretch2D(scale, 1, interpolate_mode)
assert freq_axis_kernel_size % 2 == 1
freq_axis_padding = (freq_axis_kernel_size - 1) // 2
kernel_size = (freq_axis_kernel_size, scale * 2 + 1)
if use_causal_conv:
padding = (freq_axis_padding, scale * 2)
else:
padding = (freq_axis_padding, scale)
conv = nn.Conv2D(
1, 1, kernel_size, padding=padding, bias_attr=False)
self.up_layers.extend([stretch, conv])
if nonlinear_activation is not None:
nonlinear = getattr(
nn, nonlinear_activation)(**nonlinear_activation_params)
self.up_layers.append(nonlinear)
def forward(self, c: Tensor) -> Tensor:
"""
Parameters
----------
c : Tensor
Shape (N, F, T), spectrogram
Returns
-------
Tensor
Shape (N, F, T'), where ``T' = upsample_factor * T``, upsampled
spectrogram
"""
c = c.unsqueeze(1)
for f in self.up_layers:
if self.use_causal_conv and isinstance(f, nn.Conv2D):
c = f(c)[:, :, :, c.shape[-1]]
else:
c = f(c)
return c.squeeze(1)
class ConvInUpsampleNet(nn.Layer):
"""A Layer to upsample spectrogram composed of a convolution and an
UpsampleNet.
Parameters
----------
upsample_scales : List[int]
Upsampling factors for each strech.
nonlinear_activation : Optional[str], optional
Activation after each convolution, by default None
nonlinear_activation_params : Dict[str, Any], optional
Parameters passed to construct the activation, by default {}
interpolate_mode : str, optional
Interpolation mode of the strech, by default "nearest"
freq_axis_kernel_size : int, optional
Convolution kernel size along the frequency axis, by default 1
aux_channels : int, optional
Feature size of the input, by default 80
aux_context_window : int, optional
Context window of the first 1D convolution applied to the input. It
related to the kernel size of the convolution, by default 0
If use causal convolution, the kernel size is ``window + 1``, else
the kernel size is ``2 * window + 1``.
use_causal_conv : bool, optional
Whether to use causal padding before convolution, by default False
If True, Causal padding is used along the time axis, i.e. padding
amount is ``receptive field - 1`` and 0 for before and after,
respectively.
If False, "same" padding is used along the time axis.
"""
def __init__(self,
upsample_scales: List[int],
nonlinear_activation: Optional[str]=None,
nonlinear_activation_params: Dict[str, Any]={},
interpolate_mode: str="nearest",
freq_axis_kernel_size: int=1,
aux_channels: int=80,
aux_context_window: int=0,
use_causal_conv: bool=False):
super().__init__()
self.aux_context_window = aux_context_window
self.use_causal_conv = use_causal_conv and aux_context_window > 0
kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1
self.conv_in = nn.Conv1D(
aux_channels,
aux_channels,
kernel_size=kernel_size,
bias_attr=False)
self.upsample = UpsampleNet(
upsample_scales=upsample_scales,
nonlinear_activation=nonlinear_activation,
nonlinear_activation_params=nonlinear_activation_params,
interpolate_mode=interpolate_mode,
freq_axis_kernel_size=freq_axis_kernel_size,
use_causal_conv=use_causal_conv)
def forward(self, c: Tensor) -> Tensor:
"""
Parameters
----------
c : Tensor
Shape (N, F, T), spectrogram
Returns
-------
Tensors
Shape (N, F, T'), where ``T' = upsample_factor * T``, upsampled
spectrogram
"""
c_ = self.conv_in(c)
c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_
return self.upsample(c)
class ResidualBlock(nn.Layer):
"""A gated activation unit composed of an 1D convolution, a gated tanh
unit and parametric redidual and skip connections. For more details,
refer to `WaveNet: A Generative Model for Raw Audio <https://arxiv.org/abs/1609.03499>`_.
Parameters
----------
kernel_size : int, optional
Kernel size of the 1D convolution, by default 3
residual_channels : int, optional
Feature size of the resiaudl output(and also the input), by default 64
gate_channels : int, optional
Output feature size of the 1D convolution, by default 128
skip_channels : int, optional
Feature size of the skip output, by default 64
aux_channels : int, optional
Feature size of the auxiliary input (e.g. spectrogram), by default 80
dropout : float, optional
Probability of the dropout before the 1D convolution, by default 0.
dilation : int, optional
Dilation of the 1D convolution, by default 1
bias : bool, optional
Whether to use bias in the 1D convolution, by default True
use_causal_conv : bool, optional
Whether to use causal padding for the 1D convolution, by default False
"""
def __init__(self,
kernel_size: int=3,
residual_channels: int=64,
gate_channels: int=128,
skip_channels: int=64,
aux_channels: int=80,
dropout: float=0.,
dilation: int=1,
bias: bool=True,
use_causal_conv: bool=False):
super().__init__()
self.dropout = dropout
if use_causal_conv:
padding = (kernel_size - 1) * dilation
else:
assert kernel_size % 2 == 1
padding = (kernel_size - 1) // 2 * dilation
self.use_causal_conv = use_causal_conv
self.conv = nn.Conv1D(
residual_channels,
gate_channels,
kernel_size,
padding=padding,
dilation=dilation,
bias_attr=bias)
if aux_channels is not None:
self.conv1x1_aux = nn.Conv1D(
aux_channels, gate_channels, kernel_size=1, bias_attr=False)
else:
self.conv1x1_aux = None
gate_out_channels = gate_channels // 2
self.conv1x1_out = nn.Conv1D(
gate_out_channels,
residual_channels,
kernel_size=1,
bias_attr=bias)
self.conv1x1_skip = nn.Conv1D(
gate_out_channels, skip_channels, kernel_size=1, bias_attr=bias)
def forward(self, x: Tensor, c: Tensor) -> Tuple[Tensor, Tensor]:
"""
Parameters
----------
x : Tensor
Shape (N, C_res, T), the input features.
c : Tensor
Shape (N, C_aux, T), the auxiliary input.
Returns
-------
res : Tensor
Shape (N, C_res, T), the residual output, which is used as the
input of the next ResidualBlock in a stack of ResidualBlocks.
skip : Tensor
Shape (N, C_skip, T), the skip output, which is collected among
each layer in a stack of ResidualBlocks.
"""
x_input = x
x = F.dropout(x, self.dropout, training=self.training)
x = self.conv(x)
x = x[:, :, x_input.shape[-1]] if self.use_causal_conv else x
if c is not None:
c = self.conv1x1_aux(c)
x += c
a, b = paddle.chunk(x, 2, axis=1)
x = paddle.tanh(a) * F.sigmoid(b)
skip = self.conv1x1_skip(x)
res = (self.conv1x1_out(x) + x_input) * math.sqrt(0.5)
return res, skip
class PWGGenerator(nn.Layer):
"""Wave Generator for Parallel WaveGAN
Parameters
----------
in_channels : int, optional
Number of channels of the input waveform, by default 1
out_channels : int, optional
Number of channels of the output waveform, by default 1
kernel_size : int, optional
Kernel size of the residual blocks inside, by default 3
layers : int, optional
Number of residual blocks inside, by default 30
stacks : int, optional
The number of groups to split the residual blocks into, by default 3
Within each group, the dilation of the residual block grows
exponentially.
residual_channels : int, optional
Residual channel of the residual blocks, by default 64
gate_channels : int, optional
Gate channel of the residual blocks, by default 128
skip_channels : int, optional
Skip channel of the residual blocks, by default 64
aux_channels : int, optional
Auxiliary channel of the residual blocks, by default 80
aux_context_window : int, optional
The context window size of the first convolution applied to the
auxiliary input, by default 2
dropout : float, optional
Dropout of the residual blocks, by default 0.
bias : bool, optional
Whether to use bias in residual blocks, by default True
use_weight_norm : bool, optional
Whether to use weight norm in all convolutions, by default True
use_causal_conv : bool, optional
Whether to use causal padding in the upsample network and residual
blocks, by default False
upsample_scales : List[int], optional
Upsample scales of the upsample network, by default [4, 4, 4, 4]
nonlinear_activation : Optional[str], optional
Non linear activation in upsample network, by default None
nonlinear_activation_params : Dict[str, Any], optional
Parameters passed to the linear activation in the upsample network,
by default {}
interpolate_mode : str, optional
Interpolation mode of the upsample network, by default "nearest"
freq_axis_kernel_size : int, optional
Kernel size along the frequency axis of the upsample network, by default 1
"""
def __init__(self,
in_channels: int=1,
out_channels: int=1,
kernel_size: int=3,
layers: int=30,
stacks: int=3,
residual_channels: int=64,
gate_channels: int=128,
skip_channels: int=64,
aux_channels: int=80,
aux_context_window: int=2,
dropout: float=0.,
bias: bool=True,
use_weight_norm: bool=True,
use_causal_conv: bool=False,
upsample_scales: List[int]=[4, 4, 4, 4],
nonlinear_activation: Optional[str]=None,
nonlinear_activation_params: Dict[str, Any]={},
interpolate_mode: str="nearest",
freq_axis_kernel_size: int=1):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.aux_channels = aux_channels
self.aux_context_window = aux_context_window
self.layers = layers
self.stacks = stacks
self.kernel_size = kernel_size
assert layers % stacks == 0
layers_per_stack = layers // stacks
self.first_conv = nn.Conv1D(
in_channels, residual_channels, 1, bias_attr=True)
self.upsample_net = ConvInUpsampleNet(
upsample_scales=upsample_scales,
nonlinear_activation=nonlinear_activation,
nonlinear_activation_params=nonlinear_activation_params,
interpolate_mode=interpolate_mode,
freq_axis_kernel_size=freq_axis_kernel_size,
aux_channels=aux_channels,
aux_context_window=aux_context_window,
use_causal_conv=use_causal_conv)
self.upsample_factor = np.prod(upsample_scales)
self.conv_layers = nn.LayerList()
for layer in range(layers):
dilation = 2**(layer % layers_per_stack)
conv = ResidualBlock(
kernel_size=kernel_size,
residual_channels=residual_channels,
gate_channels=gate_channels,
skip_channels=skip_channels,
aux_channels=aux_channels,
dilation=dilation,
dropout=dropout,
bias=bias,
use_causal_conv=use_causal_conv)
self.conv_layers.append(conv)
self.last_conv_layers = nn.Sequential(
nn.ReLU(),
nn.Conv1D(
skip_channels, skip_channels, 1, bias_attr=True),
nn.ReLU(),
nn.Conv1D(
skip_channels, out_channels, 1, bias_attr=True))
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x: Tensor, c: Tensor) -> Tensor:
"""Generate waveform.
Parameters
----------
x : Tensor
Shape (N, C_in, T), The input waveform.
c : Tensor
Shape (N, C_aux, T'). The auxiliary input (e.g. spectrogram). It
is upsampled to match the time resolution of the input.
Returns
-------
Tensor
Shape (N, C_out, T), the generated waveform.
"""
c = self.upsample_net(c)
assert c.shape[-1] == x.shape[-1]
x = self.first_conv(x)
skips = 0
for f in self.conv_layers:
x, s = f(x, c)
skips += s
skips *= math.sqrt(1.0 / len(self.conv_layers))
x = self.last_conv_layers(skips)
return x
def apply_weight_norm(self):
"""Recursively apply weight normalization to all the Convolution layers
in the sublayers.
"""
def _apply_weight_norm(layer):
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
nn.utils.weight_norm(layer)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
"""Recursively remove weight normalization from all the Convolution
layers in the sublayers.
"""
def _remove_weight_norm(layer):
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
pass
self.apply(_remove_weight_norm)
def inference(self, c: Optional[Tensor]=None,
x: Optional[Tensor]=None) -> Tensor:
"""Waveform generation. This function is used for single instance
inference.
Parameters
----------
c : Tensor, optional
Shape (T', C_aux), the auxiliary input, by default None
x : Tensor, optional
Shape (T, C_in), the noise waveform, by default None
If not provided, a sample is drawn from a gaussian distribution.
Returns
-------
Tensor
Shape (T, C_out), the generated waveform
"""
if x is not None:
x = paddle.transpose(x, [1, 0]).unsqueeze(0) # pseudo batch
else:
assert c is not None
x = paddle.randn(
[1, self.in_channels, c.shape[0] * self.upsample_factor])
if c is not None:
c = paddle.transpose(c, [1, 0]).unsqueeze(0) # pseudo batch
c = nn.Pad1D(self.aux_context_window, mode='replicate')(c)
out = self.forward(x, c).squeeze(0).transpose([1, 0])
return out
class PWGDiscriminator(nn.Layer):
"""A convolutional discriminator for audio.
Parameters
----------
in_channels : int, optional
Number of channels of the input audio, by default 1
out_channels : int, optional
Output feature size, by default 1
kernel_size : int, optional
Kernel size of convolutional sublayers, by default 3
layers : int, optional
Number of layers, by default 10
conv_channels : int, optional
Feature size of the convolutional sublayers, by default 64
dilation_factor : int, optional
The factor with which dilation of each convolutional sublayers grows
exponentially if it is greater than 1, else the dilation of each
convolutional sublayers grows linearly, by default 1
nonlinear_activation : str, optional
The activation after each convolutional sublayer, by default "LeakyReLU"
nonlinear_activation_params : Dict[str, Any], optional
The parameters passed to the activation's initializer, by default
{"negative_slope": 0.2}
bias : bool, optional
Whether to use bias in convolutional sublayers, by default True
use_weight_norm : bool, optional
Whether to use weight normalization at all convolutional sublayers,
by default True
"""
def __init__(self,
in_channels: int=1,
out_channels: int=1,
kernel_size: int=3,
layers: int=10,
conv_channels: int=64,
dilation_factor: int=1,
nonlinear_activation: str="LeakyReLU",
nonlinear_activation_params: Dict[
str, Any]={"negative_slope": 0.2},
bias: bool=True,
use_weight_norm: bool=True):
super().__init__()
assert kernel_size % 2 == 1
assert dilation_factor > 0
conv_layers = []
conv_in_channels = in_channels
for i in range(layers - 1):
if i == 0:
dilation = 1
else:
dilation = i if dilation_factor == 1 else dilation_factor**i
conv_in_channels = conv_channels
padding = (kernel_size - 1) // 2 * dilation
conv_layer = nn.Conv1D(
conv_in_channels,
conv_channels,
kernel_size,
padding=padding,
dilation=dilation,
bias_attr=bias)
nonlinear = getattr(
nn, nonlinear_activation)(**nonlinear_activation_params)
conv_layers.append(conv_layer)
conv_layers.append(nonlinear)
padding = (kernel_size - 1) // 2
last_conv = nn.Conv1D(
conv_in_channels,
out_channels,
kernel_size,
padding=padding,
bias_attr=bias)
conv_layers.append(last_conv)
self.conv_layers = nn.Sequential(*conv_layers)
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x: Tensor) -> Tensor:
"""
Parameters
----------
x : Tensor
Shape (N, in_channels, num_samples), the input audio.
Returns
-------
Tensor
Shape (N, out_channels, num_samples), the predicted logits.
"""
return self.conv_layers(x)
def apply_weight_norm(self):
def _apply_weight_norm(layer):
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
nn.utils.weight_norm(layer)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
def _remove_weight_norm(layer):
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
pass
self.apply(_remove_weight_norm)
class ResidualPWGDiscriminator(nn.Layer):
"""A wavenet-style discriminator for audio.
Parameters
----------
in_channels : int, optional
Number of channels of the input audio, by default 1
out_channels : int, optional
Output feature size, by default 1
kernel_size : int, optional
Kernel size of residual blocks, by default 3
layers : int, optional
Number of residual blocks, by default 30
stacks : int, optional
Number of groups of residual blocks, within which the dilation
of each residual blocks grows exponentially, by default 3
residual_channels : int, optional
Residual channels of residual blocks, by default 64
gate_channels : int, optional
Gate channels of residual blocks, by default 128
skip_channels : int, optional
Skip channels of residual blocks, by default 64
dropout : float, optional
Dropout probability of residual blocks, by default 0.
bias : bool, optional
Whether to use bias in residual blocks, by default True
use_weight_norm : bool, optional
Whether to use weight normalization in all convolutional layers,
by default True
use_causal_conv : bool, optional
Whether to use causal convolution in residual blocks, by default False
nonlinear_activation : str, optional
Activation after convolutions other than those in residual blocks,
by default "LeakyReLU"
nonlinear_activation_params : Dict[str, Any], optional
Parameters to pass to the activation, by default {"negative_slope": 0.2}
"""
def __init__(self,
in_channels: int=1,
out_channels: int=1,
kernel_size: int=3,
layers: int=30,
stacks: int=3,
residual_channels: int=64,
gate_channels: int=128,
skip_channels: int=64,
dropout: float=0.,
bias: bool=True,
use_weight_norm: bool=True,
use_causal_conv: bool=False,
nonlinear_activation: str="LeakyReLU",
nonlinear_activation_params: Dict[
str, Any]={"negative_slope": 0.2}):
super().__init__()
assert kernel_size % 2 == 1
self.in_channels = in_channels
self.out_channels = out_channels
self.layers = layers
self.stacks = stacks
self.kernel_size = kernel_size
assert layers % stacks == 0
layers_per_stack = layers // stacks
self.first_conv = nn.Sequential(
nn.Conv1D(
in_channels, residual_channels, 1, bias_attr=True),
getattr(nn, nonlinear_activation)(**nonlinear_activation_params))
self.conv_layers = nn.LayerList()
for layer in range(layers):
dilation = 2**(layer % layers_per_stack)
conv = ResidualBlock(
kernel_size=kernel_size,
residual_channels=residual_channels,
gate_channels=gate_channels,
skip_channels=skip_channels,
aux_channels=None, # no auxiliary input
dropout=dropout,
dilation=dilation,
bias=bias,
use_causal_conv=use_causal_conv)
self.conv_layers.append(conv)
self.last_conv_layers = nn.Sequential(
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
nn.Conv1D(
skip_channels, skip_channels, 1, bias_attr=True),
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
nn.Conv1D(
skip_channels, out_channels, 1, bias_attr=True))
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x: Tensor) -> Tensor:
"""
Parameters
----------
x : Tensor
Shape (N, in_channels, num_samples), the input audio.
Returns
-------
Tensor
Shape (N, out_channels, num_samples), the predicted logits.
"""
x = self.first_conv(x)
skip = 0
for f in self.conv_layers:
x, h = f(x, None)
skip += h
skip *= math.sqrt(1 / len(self.conv_layers))
x = skip
x = self.last_conv_layers(x)
return x
def apply_weight_norm(self):
def _apply_weight_norm(layer):
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
nn.utils.weight_norm(layer)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
def _remove_weight_norm(layer):
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
pass
self.apply(_remove_weight_norm)

View File

@ -20,7 +20,7 @@ import librosa
from librosa.util import pad_center from librosa.util import pad_center
import numpy as np import numpy as np
__all__ = ["quantize", "dequantize", "STFT"] __all__ = ["quantize", "dequantize", "STFT", "MelScale"]
def quantize(values, n_bands): def quantize(values, n_bands):
@ -96,10 +96,10 @@ class STFT(nn.Layer):
Defaults to True. Defaults to True.
pad_mode : string or function pad_mode : string or function
If center=True, this argument is passed to np.pad for padding the edges If center=True, this argument is passed to np.pad for padding the edges
of the signal y. By default (pad_mode="reflect"), y is padded on both of the signal y. By default (pad_mode="reflect"), y is padded on both
sides with its own reflection, mirrored around its first and last sides with its own reflection, mirrored around its first and last
sample respectively. If center=False, this argument is ignored. sample respectively. If center=False, this argument is ignored.
@ -163,17 +163,15 @@ class STFT(nn.Layer):
w = np.concatenate([w_real, w_imag], axis=0) w = np.concatenate([w_real, w_imag], axis=0)
w = w * window w = w * window
w = np.expand_dims(w, 1) w = np.expand_dims(w, 1)
self.weight = paddle.cast( weight = paddle.cast(paddle.to_tensor(w), paddle.get_default_dtype())
paddle.to_tensor(w), paddle.get_default_dtype()) self.register_buffer("weight", weight)
def forward(self, x): def forward(self, x):
"""Compute the stft transform. """Compute the stft transform.
Parameters Parameters
------------ ------------
x : Tensor [shape=(B, T)] x : Tensor [shape=(B, T)]
The input waveform. The input waveform.
Returns Returns
------------ ------------
real : Tensor [shape=(B, C, frames)] real : Tensor [shape=(B, C, frames)]
@ -195,36 +193,32 @@ class STFT(nn.Layer):
def power(self, x): def power(self, x):
"""Compute the power spectrum. """Compute the power spectrum.
Parameters Parameters
------------ ------------
x : Tensor [shape=(B, T)] x : Tensor [shape=(B, T)]
The input waveform. The input waveform.
Returns Returns
------------ ------------
Tensor [shape=(B, C, T)] Tensor [shape=(B, C, T)]
The power spectrum. The power spectrum.
""" """
real, imag = self(x) real, imag = self.forward(x)
power = real**2 + imag**2 power = real**2 + imag**2
return power return power
def magnitude(self, x): def magnitude(self, x):
"""Compute the magnitude of the spectrum. """Compute the magnitude of the spectrum.
Parameters Parameters
------------ ------------
x : Tensor [shape=(B, T)] x : Tensor [shape=(B, T)]
The input waveform. The input waveform.
Returns Returns
------------ ------------
Tensor [shape=(B, C, T)] Tensor [shape=(B, C, T)]
The magnitude of the spectrum. The magnitude of the spectrum.
""" """
power = self.power(x) power = self.power(x)
magnitude = paddle.sqrt(power) magnitude = paddle.sqrt(power) # TODO(chenfeiyu): maybe clipping
return magnitude return magnitude
@ -232,7 +226,9 @@ class MelScale(nn.Layer):
def __init__(self, sr, n_fft, n_mels, fmin, fmax): def __init__(self, sr, n_fft, n_mels, fmin, fmax):
super().__init__() super().__init__()
mel_basis = librosa.filters.mel(sr, n_fft, n_mels, fmin, fmax) mel_basis = librosa.filters.mel(sr, n_fft, n_mels, fmin, fmax)
self.weight = paddle.to_tensor(mel_basis) # self.weight = paddle.to_tensor(mel_basis)
weight = paddle.to_tensor(mel_basis, dtype=paddle.get_default_dtype())
self.register_buffer("weight", weight)
def forward(self, spec): def forward(self, spec):
# (n_mels, n_freq) * (batch_size, n_freq, n_frames) # (n_mels, n_freq) * (batch_size, n_freq, n_frames)

View File

@ -0,0 +1,144 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
from paddle.nn import functional as F
from parakeet.modules.audio import STFT
class SpectralConvergenceLoss(nn.Layer):
"""Spectral convergence loss module."""
def __init__(self):
"""Initilize spectral convergence loss module."""
super().__init__()
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Args:
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, C, T).
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, C, T).
Returns:
Tensor: Spectral convergence loss value.
"""
return paddle.norm(
y_mag - x_mag, p="fro") / paddle.clip(
paddle.norm(
y_mag, p="fro"), min=1e-10)
class LogSTFTMagnitudeLoss(nn.Layer):
"""Log STFT magnitude loss module."""
def __init__(self, epsilon=1e-10):
"""Initilize los STFT magnitude loss module."""
super().__init__()
self.epsilon = epsilon
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Args:
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
Tensor: Log STFT magnitude loss value.
"""
return F.l1_loss(
paddle.log(paddle.clip(
y_mag, min=self.epsilon)),
paddle.log(paddle.clip(
x_mag, min=self.epsilon)))
class STFTLoss(nn.Layer):
"""STFT loss module."""
def __init__(self,
fft_size=1024,
shift_size=120,
win_length=600,
window="hann"):
"""Initialize STFT loss module."""
super().__init__()
self.fft_size = fft_size
self.shift_size = shift_size
self.win_length = win_length
self.stft = STFT(
n_fft=fft_size,
hop_length=shift_size,
win_length=win_length,
window=window)
self.spectral_convergence_loss = SpectralConvergenceLoss()
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T).
y (Tensor): Groundtruth signal (B, T).
Returns:
Tensor: Spectral convergence loss value.
Tensor: Log STFT magnitude loss value.
"""
x_mag = self.stft.magnitude(x)
y_mag = self.stft.magnitude(y)
sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
return sc_loss, mag_loss
class MultiResolutionSTFTLoss(nn.Layer):
"""Multi resolution STFT loss module."""
def __init__(
self,
fft_sizes=[1024, 2048, 512],
hop_sizes=[120, 240, 50],
win_lengths=[600, 1200, 240],
window="hann", ):
"""Initialize Multi resolution STFT loss module.
Args:
fft_sizes (list): List of FFT sizes.
hop_sizes (list): List of hop sizes.
win_lengths (list): List of window lengths.
window (str): Window function type.
"""
super().__init__()
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
self.stft_losses = nn.LayerList()
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
self.stft_losses.append(STFTLoss(fs, ss, wl, window))
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T).
y (Tensor): Groundtruth signal (B, T).
Returns:
Tensor: Multi resolution spectral convergence loss value.
Tensor: Multi resolution log STFT magnitude loss value.
"""
sc_loss = 0.0
mag_loss = 0.0
for f in self.stft_losses:
sc_l, mag_l = f(x, y)
sc_loss += sc_l
mag_loss += mag_l
sc_loss /= len(self.stft_losses)
mag_loss /= len(self.stft_losses)
return sc_loss, mag_loss

View File

@ -1,162 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Mapping, List
from pathlib import Path
class KBest(object):
"""
A utility class to help save the hard drive by only keeping K best
checkpoints.
To be as modularized as possible, this class does not assume anything like
a Trainer class or anything like a checkpoint directory, it does not know
about the model or the optimizer, etc.
It is basically a dynamically mantained K-bset Mapping. When a new item is
added to the map, save_fn is called. And when an item is removed from the
map, del_fn is called. `save_fn` and `del_fn` takes a Path object as input
and returns nothing.
Though it is designed to control checkpointing behaviors, it can be used
to do something else if you pass some save_fn and del_fn.
Example
--------
>>> from pathlib import Path
>>> import shutil
>>> import paddle
>>> from paddle import nn
>>> model = nn.Linear(2, 3)
>>> def save_model(path):
... paddle.save(model.state_dict(), path)
>>> kbest_manager = KBest(max_size=5, save_fn=save_model)
>>> checkpoint_dir = Path("checkpoints")
>>> shutil.rmtree(checkpoint_dir)
>>> checkpoint_dir.mkdir(parents=True)
>>> a = np.random.rand(20)
>>> for i, score in enumerate(a):
... path = checkpoint_dir / f"step_{i}"
... kbest_manager.add_checkpoint(score, path)
>>> assert len(list(checkpoint_dir.glob("step_*"))) == 5
"""
def __init__(self,
max_size: int=5,
save_fn: Callable[[Path], None]=None,
del_fn: Callable[[Path], None]=lambda f: f.unlink()):
self.best_records: Mapping[Path, float] = {}
self.save_fn = save_fn
self.del_fn = del_fn
self.max_size = max_size
self._save_all = (max_size == -1)
def should_save(self, metric: float) -> bool:
if not self.full():
return True
# already full
worst_record_path = max(self.best_records, key=self.best_records.get)
worst_metric = self.best_records[worst_record_path]
return metric < worst_metric
def full(self):
return (not self._save_all) and len(self.best_records) == self.max_size
def add_checkpoint(self, metric, path):
if self.should_save(metric):
self.save_checkpoint_and_update(metric, path)
def save_checkpoint_and_update(self, metric, path):
# remove the worst
if self.full():
worst_record_path = max(self.best_records,
key=self.best_records.get)
self.best_records.pop(worst_record_path)
self.del_fn(worst_record_path)
# add the new one
self.save_fn(path)
self.best_records[path] = metric
class KLatest(object):
"""
A utility class to help save the hard drive by only keeping K latest
checkpoints.
To be as modularized as possible, this class does not assume anything like
a Trainer class or anything like a checkpoint directory, it does not know
about the model or the optimizer, etc.
It is basically a dynamically mantained Queue. When a new item is
added to the queue, save_fn is called. And when an item is removed from the
queue, del_fn is called. `save_fn` and `del_fn` takes a Path object as input
and returns nothing.
Though it is designed to control checkpointing behaviors, it can be used
to do something else if you pass some save_fn and del_fn.
Example
--------
>>> from pathlib import Path
>>> import shutil
>>> import paddle
>>> from paddle import nn
>>> model = nn.Linear(2, 3)
>>> def save_model(path):
... paddle.save(model.state_dict(), path)
>>> klatest_manager = KLatest(max_size=5, save_fn=save_model)
>>> checkpoint_dir = Path("checkpoints")
>>> shutil.rmtree(checkpoint_dir)
>>> checkpoint_dir.mkdir(parents=True)
>>> for i in range(20):
... path = checkpoint_dir / f"step_{i}"
... klatest_manager.add_checkpoint(path)
>>> assert len(list(checkpoint_dir.glob("step_*"))) == 5
"""
def __init__(self,
max_size: int=5,
save_fn: Callable[[Path], None]=None,
del_fn: Callable[[Path], None]=lambda f: f.unlink()):
self.latest_records: List[Path] = []
self.save_fn = save_fn
self.del_fn = del_fn
self.max_size = max_size
self._save_all = (max_size == -1)
def full(self):
return (
not self._save_all) and len(self.latest_records) == self.max_size
def add_checkpoint(self, path):
self.save_checkpoint_and_update(path)
def save_checkpoint_and_update(self, path):
# remove the earist
if self.full():
eariest_record_path = self.latest_records.pop(0)
self.del_fn(eariest_record_path)
# add the new one
self.save_fn(path)
self.latest_records.append(path)

View File

@ -0,0 +1,80 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable
PRIORITY_WRITER = 300
PRIORITY_EDITOR = 200
PRIORITY_READER = 100
class Extension(object):
"""Extension to customize the behavior of Trainer."""
trigger = (1, 'iteration')
priority = PRIORITY_READER
name = None
@property
def default_name(self):
"""Default name of the extension, class name by default."""
return type(self).__name__
def __call__(self, trainer):
"""Main action of the extention. After each update, it is executed
when the trigger fires."""
raise NotImplementedError(
'Extension implementation must override __call__.')
def initialize(self, trainer):
"""Action that is executed once to get the corect trainer state.
It is called before training normally, but if the trainer restores
states with an Snapshot extension, this method should also be called.g
"""
pass
def on_error(self, trainer, exc, tb):
"""Handles the error raised during training before finalization.
"""
pass
def finalize(self, trainer):
"""Action that is executed when training is done.
For example, visualizers would need to be closed.
"""
pass
def make_extension(trigger: Callable=None,
default_name: str=None,
priority: int=None,
finalizer: Callable=None,
initializer: Callable=None,
on_error: Callable=None):
"""Make an Extension-like object by injecting required attributes to it.
"""
if trigger is None:
trigger = Extension.trigger
if priority is None:
priority = Extension.priority
def decorator(ext):
ext.trigger = trigger
ext.default_name = default_name or ext.__name__
ext.priority = priority
ext.finalize = finalizer
ext.on_error = on_error
ext.initialize = initializer
return ext
return decorator

View File

@ -0,0 +1,73 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import Optional, Callable, Dict
from tqdm import tqdm
import paddle
from paddle import Tensor
from paddle.nn import Layer
from paddle.io import DataLoader
from parakeet.training.reporter import scope, report, DictSummary
from parakeet.training import extension
class StandardEvaluator(extension.Extension):
trigger = (1, 'epoch')
default_name = 'validation'
priority = extension.PRIORITY_WRITER
name = None
def __init__(self, model: Layer, dataloader: DataLoader):
# it is designed to hold multiple models
models = {"main": model}
self.models: Dict[str, Layer] = models
self.model = model
# dataloaders
self.dataloader = dataloader
def evaluate_core(self, batch):
# compute
self.model(batch) # you may report here
def evaluate(self):
# switch to eval mode
for layer in self.models.values():
layer.eval()
# to average evaluation metrics
summary = DictSummary()
for batch in self.dataloader:
observation = {}
with scope(observation):
# main evaluation computation here.
with paddle.no_grad():
self.evaluate_core(batch)
summary.add(observation)
summary = summary.compute_mean()
return summary
def __call__(self, trainer=None):
# evaluate and report the averaged metric to current observation
# if it is used to extend a trainer, the metrics is reported to
# to observation of the trainer
# or otherwise, you can use your own observation
summary = self.evaluate()
for k, v in summary.items():
report(k, v)

View File

@ -0,0 +1,110 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import logging
from pathlib import Path
from datetime import datetime
from typing import List, Dict, Any
import jsonlines
from parakeet.utils.mp_tools import rank_zero_only
from parakeet.training.trainer import Trainer
from parakeet.training import extension
def load_records(records_fp):
"""Load record files (json lines.)"""
with jsonlines.open(records_fp, 'r') as reader:
records = list(reader)
return records
class Snapshot(extension.Extension):
"""An extension to make snapshot of the updater object inside
the trainer. It is done by calling the updater's `save` method.
An Updater save its state_dict by default, which contains the
updater state, (i.e. epoch and iteration) and all the model
parameters and optimizer states. If the updater inside the trainer
subclasses StandardUpdater, everything is good to go.
Parameters
----------
checkpoint_dir : Union[str, Path]
The directory to save checkpoints into.
"""
trigger = (1, 'epoch')
priority = -100
default_name = "snapshot"
def __init__(self, max_size: int=5, snapshot_on_error: bool=False):
self.records: List[Dict[str, Any]] = []
self.max_size = max_size
self._snapshot_on_error = snapshot_on_error
self._save_all = (max_size == -1)
self.checkpoint_dir =...
def initialize(self, trainer: Trainer):
"""Setting up this extention."""
self.checkpoint_dir = trainer.out / "checkpoints"
# load existing records
record_path: Path = self.checkpoint_dir / "records.jsonl"
if record_path.exists():
logging.debug("Loading from an existing checkpoint dir")
self.records = load_records(record_path)
trainer.updater.load(self.records[-1]['path'])
def on_error(self, trainer, exc, tb):
if self._snapshot_on_error:
self.save_checkpoint_and_update(trainer)
def __call__(self, trainer: Trainer):
self.save_checkpoint_and_update(trainer)
def full(self):
"""Whether the number of snapshots it keeps track of is greater
than the max_size."""
return (not self._save_all) and len(self.records) > self.max_size
@rank_zero_only
def save_checkpoint_and_update(self, trainer: Trainer):
"""Saving new snapshot and remove the oldest snapshot if needed."""
iteration = trainer.updater.state.iteration
path = self.checkpoint_dir / f"snapshot_iter_{iteration}.pdz"
# add the new one
trainer.updater.save(path)
record = {
"time": str(datetime.now()),
'path': str(path.resolve()), # use absolute path
'iteration': iteration
}
self.records.append(record)
# remove the earist
if self.full():
eariest_record = self.records[0]
os.remove(eariest_record["path"])
self.records.pop(0)
# update the record file
record_path = self.checkpoint_dir / "records.jsonl"
with jsonlines.open(record_path, 'w') as writer:
for record in self.records:
# jsonlines.open may return a Writer or a Reader
writer.write(record) # pylint: disable=no-member

View File

@ -0,0 +1,40 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from visualdl import LogWriter
from parakeet.training.trainer import Trainer
from parakeet.training import extension
class VisualDL(extension.Extension):
"""A wrapper of visualdl log writer. It assumes that the metrics to be visualized
are all scalars which are recorded into the `.observation` dictionary of the
trainer object. The dictionary is created for each step, thus the visualdl log
writer uses the iteration from the updater's `iteration` as the global step to
add records.
"""
trigger = (1, 'iteration')
default_name = 'visualdl'
priority = extension.PRIORITY_READER
def __init__(self, writer):
self.writer = writer
def __call__(self, trainer: Trainer):
for k, v in trainer.observation.items():
self.writer.add_scalar(k, v, step=trainer.updater.state.iteration)
def finalize(self, trainer):
self.writer.close()

View File

@ -12,7 +12,9 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import math
import contextlib import contextlib
from collections import defaultdict
OBSERVATIONS = None OBSERVATIONS = None
@ -45,3 +47,113 @@ def report(name, value):
return return
else: else:
observations[name] = value observations[name] = value
class Summary(object):
"""Online summarization of a sequence of scalars.
Summary computes the statistics of given scalars online.
"""
def __init__(self):
self._x = 0.0
self._x2 = 0.0
self._n = 0
def add(self, value, weight=1):
"""Adds a scalar value.
Args:
value: Scalar value to accumulate. It is either a NumPy scalar or
a zero-dimensional array (on CPU or GPU).
weight: An optional weight for the value. It is a NumPy scalar or
a zero-dimensional array (on CPU or GPU).
Default is 1 (integer).
"""
self._x += weight * value
self._x2 += weight * value * value
self._n += weight
def compute_mean(self):
"""Computes the mean."""
x, n = self._x, self._n
return x / n
def make_statistics(self):
"""Computes and returns the mean and standard deviation values.
Returns:
tuple: Mean and standard deviation values.
"""
x, n = self._x, self._n
mean = x / n
var = self._x2 / n - mean * mean
std = math.sqrt(var)
return mean, std
class DictSummary(object):
"""Online summarization of a sequence of dictionaries.
``DictSummary`` computes the statistics of a given set of scalars online.
It only computes the statistics for scalar values and variables of scalar
values in the dictionaries.
"""
def __init__(self):
self._summaries = defaultdict(Summary)
def add(self, d):
"""Adds a dictionary of scalars.
Args:
d (dict): Dictionary of scalars to accumulate. Only elements of
scalars, zero-dimensional arrays, and variables of
zero-dimensional arrays are accumulated. When the value
is a tuple, the second element is interpreted as a weight.
"""
summaries = self._summaries
for k, v in d.items():
w = 1
if isinstance(v, tuple):
w = v[1]
v = v[0]
summaries[k].add(v, weight=w)
def compute_mean(self):
"""Creates a dictionary of mean values.
It returns a single dictionary that holds a mean value for each entry
added to the summary.
Returns:
dict: Dictionary of mean values.
"""
return {
name: summary.compute_mean()
for name, summary in self._summaries.items()
}
def make_statistics(self):
"""Creates a dictionary of statistics.
It returns a single dictionary that holds mean and standard deviation
values for every entry added to the summary. For an entry of name
``'key'``, these values are added to the dictionary by names ``'key'``
and ``'key.std'``, respectively.
Returns:
dict: Dictionary of statistics of all entries.
"""
stats = {}
for name, summary in self._summaries.items():
mean, std = summary.make_statistics()
stats[name] = mean
stats[name + '.std'] = std
return stats

View File

@ -0,0 +1,27 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import logging
import paddle
import numpy as np
def seed_everything(seed: int):
"""Seed paddle, random and np.random to help reproductivity."""
paddle.seed(seed)
random.seed(seed)
np.random.seed(seed)
logging.debug(f"Set the seed of paddle, random, np.random to {seed}.")

View File

@ -12,16 +12,22 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import sys
import six
import traceback
from pathlib import Path from pathlib import Path
import tqdm from collections import OrderedDict
from dataclasses import dataclass from typing import Callable, Union, List
from parakeet.training.trigger import get_trigger, IntervalTrigger import tqdm
from parakeet.training.trigger import get_trigger, IntervalTrigger, LimitTrigger
from parakeet.training.updater import UpdaterBase from parakeet.training.updater import UpdaterBase
from parakeet.training.reporter import scope from parakeet.training.reporter import scope
from parakeet.training.extension import Extension, PRIORITY_READER
class ExtensionEntry(object): class _ExtensionEntry(object):
def __init__(self, extension, trigger, priority): def __init__(self, extension, trigger, priority):
self.extension = extension self.extension = extension
self.trigger = trigger self.trigger = trigger
@ -31,31 +37,76 @@ class ExtensionEntry(object):
class Trainer(object): class Trainer(object):
def __init__(self, def __init__(self,
updater: UpdaterBase, updater: UpdaterBase,
stop_trigger=None, stop_trigger: Callable=None,
out='result', out: Union[str, Path]='result',
extensions=None): extensions: List[Extension]=None):
self.updater = updater self.updater = updater
self.extensions = {} self.extensions = OrderedDict()
self.stop_trigger = get_trigger(stop_trigger) self.stop_trigger = LimitTrigger(*stop_trigger)
self.out = Path(out) self.out = Path(out)
self.observation = {} self.observation =...
def setup(self): self._done = False
pass if extensions:
for ext in extensions:
self.extend(ext)
@property
def is_before_training(self):
return self.updater.state.iteration == 0
def extend(self, extension, name=None, trigger=None, priority=None): def extend(self, extension, name=None, trigger=None, priority=None):
# get name for the extension
# argument \
# -> extention's name \
# -> default_name (class name, when it is an object) \
# -> function name when it is a function \
# -> error
if name is None:
name = getattr(extension, 'name', None)
if name is None:
name = getattr(extension, 'default_name', None)
if name is None:
name = getattr(extension, '__name__', None)
if name is None:
raise ValueError(
"Name is not given for the extension.")
if name == 'training':
raise ValueError("training is a reserved name.")
if trigger is None:
trigger = getattr(extension, 'trigger', (1, 'iteration'))
trigger = get_trigger(trigger) trigger = get_trigger(trigger)
if priority is None:
priority = getattr(extension, 'priority', PRIORITY_READER)
# add suffix to avoid nameing conflict
ordinal = 0 ordinal = 0
modified_name = name modified_name = name
while name in self.extensions: while modified_name in self.extensions:
ordinal += 1 ordinal += 1
modified_name = f"{name}_{ordinal}" modified_name = f"{name}_{ordinal}"
extension.name = modified_name
self.extensions[modified_name] = ExtensionEntry(extension, trigger, self.extensions[modified_name] = _ExtensionEntry(extension, trigger,
priority) priority)
def get_extension(self, name):
"""get extension by name."""
extensions = self.extensions
if name in extensions:
return extensions[name].extension
else:
raise ValueError(f'extension {name} not found')
def run(self): def run(self):
if self._done:
raise RuntimeError("Training is already done!.")
self.out.mkdir(parents=True, exist_ok=True)
# sort extensions by priorities once # sort extensions by priorities once
extension_order = sorted( extension_order = sorted(
self.extensions.keys(), self.extensions.keys(),
@ -64,28 +115,72 @@ class Trainer(object):
extensions = [(name, self.extensions[name]) extensions = [(name, self.extensions[name])
for name in extension_order] for name in extension_order]
update = self.updater.update # initializing all extensions
for name, entry in extensions:
if hasattr(entry.extension, "initialize"):
entry.extension.initialize(self)
update = self.updater.update # training step
stop_trigger = self.stop_trigger stop_trigger = self.stop_trigger
# TODO(chenfeiyu): display progress bar correctly print(self.updater.state)
# if the trainer is controlled by epoch: use 2 progressbars
# if the trainer is controlled by iteration: use 1 progressbar # display only one progress bar
if isinstance(stop_trigger, IntervalTrigger): max_iteration = None
if isinstance(stop_trigger, LimitTrigger):
if stop_trigger.unit is 'epoch': if stop_trigger.unit is 'epoch':
max_epoch = self.stop_trigger.period max_epoch = self.stop_trigger.limit
updates_per_epoch = getattr(self.updater, "updates_per_epoch",
None)
max_iteration = max_epoch * updates_per_epoch if updates_per_epoch else None
else: else:
max_iteration = self.stop_trigger.period max_iteration = self.stop_trigger.limit
while not stop_trigger(self): p = tqdm.tqdm(
self.observation = {} initial=self.updater.state.iteration, total=max_iteration)
# set observation as the report target
# you can use report freely in Updater.update()
# updating parameters and state try:
with scope(self.observation): while not stop_trigger(self):
update() self.observation = {}
# set observation as the report target
# you can use report freely in Updater.update()
# execute extension when necessary # updating parameters and state
with scope(self.observation):
update()
p.update()
# execute extension when necessary
for name, entry in extensions:
if entry.trigger(self):
entry.extension(self)
# print("###", self.observation)
except Exception as e:
f = sys.stderr
f.write(f"Exception in main training loop: {e}\n")
f.write("Traceback (most recent call last):\n")
traceback.print_tb(sys.exc_info()[2])
f.write(
"Trainer extensions will try to handle the extension. Then all extensions will finalize."
)
# capture the exception in the mian training loop
exc_info = sys.exc_info()
# try to handle it
for name, entry in extensions: for name, entry in extensions:
if entry.trigger(self): if hasattr(entry.extension, "on_error"):
entry.extension(self) try:
entry.extension.on_error(self, e, sys.exc_info()[2])
except Exception as ee:
f.write(f"Exception in error handler: {ee}\n")
f.write('Traceback (most recent call last):\n')
traceback.print_tb(sys.exc_info()[2])
# raise exception in main training loop
six.reraise(*exc_info)
finally:
for name, entry in extensions:
if hasattr(entry.extension, "finalize"):
entry.extension.finalize(self)

View File

@ -12,21 +12,9 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from parakeet.training.triggers.interval_trigger import IntervalTrigger
class IntervalTrigger(object): from parakeet.training.triggers.limit_trigger import LimitTrigger
def __init__(self, period: int, unit: str): from parakeet.training.triggers.time_trigger import TimeTrigger
if unit not in ("iteration", "epoch"):
raise ValueError("unit should be 'iteration' or 'epoch'")
self.period = period
self.unit = unit
def __call__(self, trainer):
state = trainer.updater.state
if self.unit == "epoch":
fire = not (state.epoch % self.period)
else:
fire = not (state.iteration % self.iteration)
return fire
def never_file_trigger(trainer): def never_file_trigger(trainer):

View File

@ -0,0 +1,31 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class IntervalTrigger(object):
"""A Predicate to do something every N cycle."""
def __init__(self, period: int, unit: str):
if unit not in ("iteration", "epoch"):
raise ValueError("unit should be 'iteration' or 'epoch'")
if period <= 0:
raise ValueError("period should be a positive integer.")
self.period = period
self.unit = unit
def __call__(self, trainer):
state = trainer.updater.state
index = getattr(state, self.unit)
fire = index % self.period == 0
return fire

View File

@ -0,0 +1,31 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class LimitTrigger(object):
"""A Predicate to decide whether to stop."""
def __init__(self, limit: int, unit: str):
if unit not in ("iteration", "epoch"):
raise ValueError("unit should be 'iteration' or 'epoch'")
if limit <= 0:
raise ValueError("limit should be a positive integer.")
self.limit = limit
self.unit = unit
def __call__(self, trainer):
state = trainer.updater.state
index = getattr(state, self.unit)
fire = index >= self.limit
return fire

View File

@ -0,0 +1,35 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class TimeTrigger(object):
"""Trigger based on a fixed time interval.
This trigger accepts iterations with a given interval time.
Args:
period (float): Interval time. It is given in seconds.
"""
def __init__(self, period):
self._period = period
self._next_time = self._period
def __call__(self, trainer):
if self._next_time < trainer.elapsed_time:
self._next_time += self._period
return True
else:
return False

View File

@ -12,12 +12,21 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import logging
from dataclasses import dataclass from dataclasses import dataclass
from typing import Optional from typing import Optional
from typing import Dict
from typing import Union
from timer import timer
import paddle
from paddle import Tensor
from paddle.nn import Layer from paddle.nn import Layer
from paddle.optimizer import Optimizer from paddle.optimizer import Optimizer
from paddle.io import DataLoader from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from parakeet.training.reporter import report
@dataclass @dataclass
@ -56,68 +65,33 @@ class UpdaterBase(object):
So the best practice is to define a model and define a updater for it. So the best practice is to define a model and define a updater for it.
""" """
def update(self): def __init__(self, init_state=None):
pass
def update_core(self):
pass
class StandardUpdater(UpdaterBase):
"""An example of over-simplification. Things may not be that simple, but
you can subclass it to fit your need.
"""
def __init__(self,
model: Layer,
dataloader: DataLoader,
optimizer: Optimizer,
loss_func=None,
auto_new_epoch: bool=True,
init_state: Optional[UpdaterState]=None):
self.model = model
self.dataloader = dataloader
self.optimizer = optimizer
self.loss_func = loss_func
self.auto_new_epoch = auto_new_epoch
self.iterator = iter(dataloader)
if init_state is None: if init_state is None:
self.state = UpdaterState() self.state = UpdaterState()
else: else:
self.state = init_state self.state = init_state
def update(self): def update(self, batch):
self.update_core() raise NotImplementedError(
self.state.iteration += 1 "Implement your own `update` method for training a step.")
def new_epoch(self): def state_dict(self):
self.iterator = iter(self.dataloader) state_dict = {
self.state.epoch += 1 "epoch": self.state.epoch,
"iteration": self.state.iteration,
}
return state_dict
def update_core(self): def set_state_dict(self, state_dict):
model = self.model self.state.epoch = state_dict["epoch"]
optimizer = self.optimizer self.state.iteration = state_dict["iteration"]
loss_func = self.loss_func
model.train() def save(self, path):
optimizer.clear_grad() logging.debug(f"Saving to {path}.")
archive = self.state_dict()
paddle.save(archive, str(path))
# fetch a batch def load(self, path):
try: logging.debug(f"Loading from {path}.")
batch = next(self.iterator) archive = paddle.load(str(path))
except StopIteration as e: self.set_state_dict(archive)
if self.auto_new_epoch:
self.new_epoch()
# forward
if self.loss_func is not None:
loss = loss_func(batch)
else:
loss = model(batch)
# backward
loss.backward()
# update parameters
optimizer.step()

View File

@ -0,0 +1,190 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from dataclasses import dataclass
from typing import Optional
from typing import Dict
from typing import Union
from timer import timer
import paddle
from paddle import Tensor
from paddle.nn import Layer
from paddle.optimizer import Optimizer
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from parakeet.training.reporter import report
from parakeet.training.updater import UpdaterBase, UpdaterState
class StandardUpdater(UpdaterBase):
"""An example of over-simplification. Things may not be that simple, but
you can subclass it to fit your need.
"""
def __init__(self,
model: Layer,
optimizer: Optimizer,
dataloader: DataLoader,
init_state: Optional[UpdaterState]=None):
# it is designed to hold multiple models
models = {"main": model}
self.models: Dict[str, Layer] = models
self.model = model
# it is designed to hold multiple optimizers
optimizers = {"main": optimizer}
self.optimizer = optimizer
self.optimizers: Dict[str, Optimizer] = optimizers
# dataloaders
self.dataloader = dataloader
# init state
if init_state is None:
self.state = UpdaterState()
else:
self.state = init_state
self.train_iterator = iter(dataloader)
def update(self):
# We increase the iteration index after updating and before extension.
# Here are the reasons.
# 0. Snapshotting(as well as other extensions, like visualizer) is
# executed after a step of updating;
# 1. We decide to increase the iteration index after updating and
# before any all extension is executed.
# 3. We do not increase the iteration after extension because we
# prefer a consistent resume behavior, when load from a
# `snapshot_iter_100.pdz` then the next step to train is `101`,
# naturally. But if iteration is increased increased after
# extension(including snapshot), then, a `snapshot_iter_99` is
# loaded. You would need a extra increasing of the iteration idex
# before training to avoid another iteration `99`, which has been
# done before snapshotting.
# 4. Thus iteration index represrnts "currently how mant epochs has
# been done."
# NOTE: use report to capture the correctly value. If you want to
# report the learning rate used for a step, you must report it before
# the learning rate scheduler's step() has been called. In paddle's
# convention, we do not use an extension to change the learning rate.
# so if you want to report it, do it in the updater.
# Then here comes the next question. When is the proper time to
# increase the epoch index? Since all extensions are executed after
# updating, it is the time that after updating is the proper time to
# increase epoch index.
# 1. If we increase the epoch index before updating, then an extension
# based ot epoch would miss the correct timing. It could only be
# triggerd after an extra updating.
# 2. Theoretically, when an epoch is done, the epoch index should be
# increased. So it would be increase after updating.
# 3. Thus, eppoch index represents "currently how many epochs has been
# done." So it starts from 0.
# switch to training mode
for layer in self.models.values():
layer.train()
# training for a step is implemented here
batch = self.read_batch()
self.update_core(batch)
self.state.iteration += 1
if self.updaters_per_epoch is not None:
if self.state.iteration % self.updaters_per_epoch == 0:
self.state.epoch += 1
def update_core(self, batch):
"""A simple case for a training step. Basic assumptions are:
Single model;
Single optimizer;
A batch from the dataloader is just the input of the model;
The model return a single loss, or a dict containing serval losses.
Parameters updates at every batch, no gradient accumulation.
"""
loss = self.model(*batch)
if isinstance(loss, Tensor):
loss_dict = {"main": loss}
else:
# Dict[str, Tensor]
loss_dict = loss
if "main" not in loss_dict:
main_loss = 0
for loss_item in loss.values():
main_loss += loss_item
loss_dict["main"] = main_loss
for name, loss_item in loss_dict.items():
report(name, float(loss_item))
self.optimizer.clear_gradient()
loss_dict["main"].backward()
self.optimizer.update()
@property
def updaters_per_epoch(self):
"""Number of updater per epoch, determined by the length of the
dataloader."""
length_of_dataloader = None
try:
length_of_dataloader = len(self.dataloader)
except TypeError:
logging.debug("This dataloader has no __len__.")
finally:
return length_of_dataloader
def new_epoch(self):
"""Start a new epoch."""
# NOTE: all batch sampler for distributed training should
# subclass DistributedBatchSampler and implement `set_epoch` method
batch_sampler = self.dataloader.batch_sampler
if isinstance(batch_sampler, DistributedBatchSampler):
batch_sampler.set_epoch(self.state.epoch)
self.train_iterator = iter(self.dataloader)
def read_batch(self):
"""Read a batch from the data loader, auto renew when data is exhausted."""
with timer() as t:
try:
batch = next(self.train_iterator)
except StopIteration:
self.new_epoch()
batch = next(self.train_iterator)
logging.debug(
f"Read a batch takes {t.elapse}s.") # replace it with logging
return batch
def state_dict(self):
"""State dict of a Updater, model, optimizer and updater state are included."""
state_dict = super().state_dict()
for name, layer in self.models.items():
state_dict[f"{name}_params"] = layer.state_dict()
for name, optim in self.optimizers.items():
state_dict[f"{name}_optimizer"] = optim.state_dict()
return state_dict
def set_state_dict(self, state_dict):
"""Set state dict for a Updater. Parameters of models, states for
optimizers and UpdaterState are restored."""
for name, layer in self.models.items():
layer.set_state_dict(state_dict[f"{name}_params"])
for name, optim in self.optimizers.items():
optim.set_state_dict(state_dict[f"{name}_optimizer"])
super().set_state_dict(state_dict)

105
parakeet/utils/h5_utils.py Normal file
View File

@ -0,0 +1,105 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Union, Any
import sys
import logging
import h5py
import numpy as np
def read_hdf5(filename: Union[Path, str], dataset_name: str) -> Any:
"""Read a dataset from a HDF5 file.
Parameters
----------
filename : Union[Path, str]
Path of the HDF5 file.
dataset_name : str
Name of the dataset to read.
Returns
-------
Any
The retrieved dataset.
"""
filename = Path(filename)
if not filename.exists():
logging.error(f"There is no such a hdf5 file ({filename}).")
sys.exit(1)
hdf5_file = h5py.File(filename, "r")
if dataset_name not in hdf5_file:
logging.error(
f"There is no such a data in hdf5 file. ({dataset_name})")
sys.exit(1)
# [()]: a special syntax of h5py to get the dataset as-is
hdf5_data = hdf5_file[dataset_name][()]
hdf5_file.close()
return hdf5_data
def write_hdf5(filename: Union[Path, str],
dataset_name: str,
write_data: np.ndarray,
is_overwrite: bool=True) -> None:
"""Write dataset to HDF5 file.
Parameters
----------
filename : Union[Path, str]
Path of the HDF5 file.
dataset_name : str
Name of the dataset to write to.
write_data : np.ndarrays
The data to write.
is_overwrite : bool, optional
Whether to overwrite, by default True
"""
# convert to numpy array
filename = Path(filename)
write_data = np.array(write_data)
# check folder existence
filename.parent.mkdir(parents=True, exist_ok=True)
# check hdf5 existence
if filename.exists():
# if already exists, open with r+ mode
hdf5_file = h5py.File(filename, "r+")
# check dataset existence
if dataset_name in hdf5_file:
if is_overwrite:
logging.warning("Dataset in hdf5 file already exists. "
"recreate dataset in hdf5.")
hdf5_file.__delitem__(dataset_name)
else:
logging.error(
"Dataset in hdf5 file already exists. "
"if you want to overwrite, please set is_overwrite = True.")
hdf5_file.close()
sys.exit(1)
else:
# if not exists, open with w mode
hdf5_file = h5py.File(filename, "w")
# write data to hdf5
hdf5_file.create_dataset(dataset_name, data=write_data)
hdf5_file.flush()
hdf5_file.close()

34
parakeet/utils/profile.py Normal file
View File

@ -0,0 +1,34 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle.framework import core
from paddle.framework import CUDAPlace
from contextlib import contextmanager
def synchronize():
"""Trigger cuda synchronization for better timing."""
place = paddle.fluid.framework._current_expected_place()
if isinstance(place, CUDAPlace):
paddle.fluid.core._cuda_synchronize(place)
@contextmanager
def nvtx_span(name):
try:
core.nvprof_nvtx_push(name)
yield
finally:
core.nvprof_nvtx_pop()

319
parakeet/utils/timeline.py Normal file
View File

@ -0,0 +1,319 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import six
import sys
import unittest
import google.protobuf.text_format as text_format
import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--profile_path',
type=str,
default='',
help='Input profile file name. If there are multiple file, the format '
'should be trainer1=file1,trainer2=file2,ps=file3')
parser.add_argument(
'--timeline_path', type=str, default='', help='Output timeline file name.')
args = parser.parse_args()
class _ChromeTraceFormatter(object):
def __init__(self):
self._events = []
self._metadata = []
def _create_event(self, ph, category, name, pid, tid, timestamp):
"""Creates a new Chrome Trace event.
For details of the file format, see:
https://github.com/catapult-project/catapult/blob/master/tracing/README.md
Args:
ph: The type of event - usually a single character.
category: The event category as a string.
name: The event name as a string.
pid: Identifier of the process generating this event as an integer.
tid: Identifier of the thread generating this event as an integer.
timestamp: The timestamp of this event as a long integer.
Returns:
A JSON compatible event object.
"""
event = {}
event['ph'] = ph
event['cat'] = category
event['name'] = name.replace("ParallelExecutor::Run/", "")
event['pid'] = pid
event['tid'] = tid
event['ts'] = timestamp
return event
def emit_pid(self, name, pid):
"""Adds a process metadata event to the trace.
Args:
name: The process name as a string.
pid: Identifier of the process as an integer.
"""
event = {}
event['name'] = 'process_name'
event['ph'] = 'M'
event['pid'] = pid
event['args'] = {'name': name}
self._metadata.append(event)
def emit_region(self, timestamp, duration, pid, tid, category, name, args):
"""Adds a region event to the trace.
Args:
timestamp: The start timestamp of this region as a long integer.
duration: The duration of this region as a long integer.
pid: Identifier of the process generating this event as an integer.
tid: Identifier of the thread generating this event as an integer.
category: The event category as a string.
name: The event name as a string.
args: A JSON-compatible dictionary of event arguments.
"""
event = self._create_event('X', category, name, pid, tid, timestamp)
event['dur'] = duration
event['args'] = args
self._events.append(event)
def emit_counter(self, category, name, pid, timestamp, counter, value):
"""Emits a record for a single counter.
Args:
category: The event category as string
name: The event name as string
pid: Identifier of the process generating this event as integer
timestamp: The timestamps of this event as long integer
counter: Name of the counter as string
value: Value of the counter as integer
tid: Thread id of the allocation as integer
"""
event = self._create_event('C', category, name, pid, 0, timestamp)
event['args'] = {counter: value}
self._events.append(event)
def format_to_string(self, pretty=False):
"""Formats the chrome trace to a string.
Args:
pretty: (Optional.) If True, produce human-readable JSON output.
Returns:
A JSON-formatted string in Chrome Trace format.
"""
trace = {}
trace['traceEvents'] = self._metadata + self._events
if pretty:
return json.dumps(trace, indent=4, separators=(',', ': '))
else:
return json.dumps(trace, separators=(',', ':'))
class Timeline(object):
def __init__(self, profile_dict):
self._profile_dict = profile_dict
self._pid = 0
self._devices = dict()
self._mem_devices = dict()
self._chrome_trace = _ChromeTraceFormatter()
def _allocate_pid(self):
cur_pid = self._pid
self._pid += 1
return cur_pid
def _allocate_pids(self):
for k, profile_pb in six.iteritems(self._profile_dict):
for event in profile_pb.events:
if event.type == profiler_pb2.Event.CPU:
if (k, event.device_id, "CPU") not in self._devices:
pid = self._allocate_pid()
self._devices[(k, event.device_id, "CPU")] = pid
# -1 device id represents CUDA API(RunTime) call.(e.g. cudaLaunch, cudaMemcpy)
if event.device_id == -1:
self._chrome_trace.emit_pid("%s:cuda_api" % k, pid)
else:
self._chrome_trace.emit_pid(
"%s:cpu:block:%d" % (k, event.device_id), pid)
elif event.type == profiler_pb2.Event.GPUKernel:
if (k, event.device_id, "GPUKernel") not in self._devices:
pid = self._allocate_pid()
self._devices[(k, event.device_id, "GPUKernel")] = pid
self._chrome_trace.emit_pid("%s:gpu:%d" %
(k, event.device_id), pid)
if not hasattr(profile_pb, "mem_events"):
continue
for mevent in profile_pb.mem_events:
if mevent.place == profiler_pb2.MemEvent.CUDAPlace:
if (k, mevent.device_id, "GPU") not in self._mem_devices:
pid = self._allocate_pid()
self._mem_devices[(k, mevent.device_id, "GPU")] = pid
self._chrome_trace.emit_pid(
"memory usage on %s:gpu:%d" % (k, mevent.device_id),
pid)
elif mevent.place == profiler_pb2.MemEvent.CPUPlace:
if (k, mevent.device_id, "CPU") not in self._mem_devices:
pid = self._allocate_pid()
self._mem_devices[(k, mevent.device_id, "CPU")] = pid
self._chrome_trace.emit_pid(
"memory usage on %s:cpu:%d" % (k, mevent.device_id),
pid)
elif mevent.place == profiler_pb2.MemEvent.CUDAPinnedPlace:
if (k, mevent.device_id, "CUDAPinnedPlace"
) not in self._mem_devices:
pid = self._allocate_pid()
self._mem_devices[(k, mevent.device_id,
"CUDAPinnedPlace")] = pid
self._chrome_trace.emit_pid(
"memory usage on %s:cudapinnedplace:%d" %
(k, mevent.device_id), pid)
elif mevent.place == profiler_pb2.MemEvent.NPUPlace:
if (k, mevent.device_id, "NPU") not in self._mem_devices:
pid = self._allocate_pid()
self._mem_devices[(k, mevent.device_id, "NPU")] = pid
self._chrome_trace.emit_pid(
"memory usage on %s:npu:%d" % (k, mevent.device_id),
pid)
if (k, 0, "CPU") not in self._mem_devices:
pid = self._allocate_pid()
self._mem_devices[(k, 0, "CPU")] = pid
self._chrome_trace.emit_pid("memory usage on %s:cpu:%d" %
(k, 0), pid)
if (k, 0, "GPU") not in self._mem_devices:
pid = self._allocate_pid()
self._mem_devices[(k, 0, "GPU")] = pid
self._chrome_trace.emit_pid("memory usage on %s:gpu:%d" %
(k, 0), pid)
if (k, 0, "CUDAPinnedPlace") not in self._mem_devices:
pid = self._allocate_pid()
self._mem_devices[(k, 0, "CUDAPinnedPlace")] = pid
self._chrome_trace.emit_pid(
"memory usage on %s:cudapinnedplace:%d" % (k, 0), pid)
if (k, 0, "NPU") not in self._mem_devices:
pid = self._allocate_pid()
self._mem_devices[(k, 0, "NPU")] = pid
self._chrome_trace.emit_pid("memory usage on %s:npu:%d" %
(k, 0), pid)
def _allocate_events(self):
for k, profile_pb in six.iteritems(self._profile_dict):
for event in profile_pb.events:
if event.type == profiler_pb2.Event.CPU:
type = "CPU"
elif event.type == profiler_pb2.Event.GPUKernel:
type = "GPUKernel"
pid = self._devices[(k, event.device_id, type)]
args = {'name': event.name}
if event.memcopy.bytes > 0:
args['mem_bytes'] = event.memcopy.bytes
if hasattr(event, "detail_info") and event.detail_info:
args['detail_info'] = event.detail_info
# TODO(panyx0718): Chrome tracing only handles ms. However, some
# ops takes micro-seconds. Hence, we keep the ns here.
self._chrome_trace.emit_region(
event.start_ns, (event.end_ns - event.start_ns) / 1.0, pid,
event.sub_device_id, 'Op', event.name, args)
def _allocate_memory_event(self):
if not hasattr(profiler_pb2, "MemEvent"):
return
place_to_str = {
profiler_pb2.MemEvent.CPUPlace: "CPU",
profiler_pb2.MemEvent.CUDAPlace: "GPU",
profiler_pb2.MemEvent.CUDAPinnedPlace: "CUDAPinnedPlace",
profiler_pb2.MemEvent.NPUPlace: "NPU"
}
for k, profile_pb in six.iteritems(self._profile_dict):
mem_list = []
end_profiler = 0
for mevent in profile_pb.mem_events:
crt_info = dict()
crt_info['time'] = mevent.start_ns
crt_info['size'] = mevent.bytes
if mevent.place in place_to_str:
place = place_to_str[mevent.place]
else:
place = "UnDefine"
crt_info['place'] = place
pid = self._mem_devices[(k, mevent.device_id, place)]
crt_info['pid'] = pid
crt_info['thread_id'] = mevent.thread_id
crt_info['device_id'] = mevent.device_id
mem_list.append(crt_info)
crt_info = dict()
crt_info['place'] = place
crt_info['pid'] = pid
crt_info['thread_id'] = mevent.thread_id
crt_info['device_id'] = mevent.device_id
crt_info['time'] = mevent.end_ns
crt_info['size'] = -mevent.bytes
mem_list.append(crt_info)
end_profiler = max(end_profiler, crt_info['time'])
mem_list.sort(key=lambda tmp: (tmp.get('time', 0)))
i = 0
total_size = 0
while i < len(mem_list):
total_size += mem_list[i]['size']
while i < len(mem_list) - 1 and mem_list[i]['time'] == mem_list[
i + 1]['time']:
total_size += mem_list[i + 1]['size']
i += 1
self._chrome_trace.emit_counter(
"Memory", "Memory", mem_list[i]['pid'], mem_list[i]['time'],
0, total_size)
i += 1
def generate_chrome_trace(self):
self._allocate_pids()
self._allocate_events()
self._allocate_memory_event()
return self._chrome_trace.format_to_string()
profile_path = '/tmp/profile'
if args.profile_path:
profile_path = args.profile_path
timeline_path = '/tmp/timeline'
if args.timeline_path:
timeline_path = args.timeline_path
profile_paths = profile_path.split(',')
profile_dict = dict()
if len(profile_paths) == 1:
with open(profile_path, 'rb') as f:
profile_s = f.read()
profile_pb = profiler_pb2.Profile()
profile_pb.ParseFromString(profile_s)
profile_dict['trainer'] = profile_pb
else:
for profile_path in profile_paths:
k, v = profile_path.split('=')
with open(v, 'rb') as f:
profile_s = f.read()
profile_pb = profiler_pb2.Profile()
profile_pb.ParseFromString(profile_s)
profile_dict[k] = profile_pb
tl = Timeline(profile_dict)
with open(timeline_path, 'w') as f:
f.write(tl.generate_chrome_trace())

View File

@ -64,7 +64,6 @@ setup_info = dict(
'scipy', 'scipy',
'pandas', 'pandas',
'sox', 'sox',
# 'opencc',
'soundfile', 'soundfile',
'g2p_en', 'g2p_en',
'yacs', 'yacs',
@ -73,6 +72,9 @@ setup_info = dict(
'webrtcvad', 'webrtcvad',
'g2pM', 'g2pM',
'praatio', 'praatio',
"h5py",
"timer",
'jsonlines',
], ],
extras_require={'doc': ["sphinx", "sphinx-rtd-theme", "numpydoc"], }, extras_require={'doc': ["sphinx", "sphinx-rtd-theme", "numpydoc"], },

View File

@ -1,52 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import shutil
import numpy as np
from parakeet.training.checkpoint import KBest, KLatest
def test_kbest():
def save_fn(path):
with open(path, 'wt') as f:
f.write(f"My path is {str(path)}\n")
K = 1
kbest_manager = KBest(max_size=K, save_fn=save_fn)
checkpoint_dir = Path("checkpoints")
shutil.rmtree(checkpoint_dir)
checkpoint_dir.mkdir(parents=True)
a = np.random.rand(20)
for i, score in enumerate(a):
path = checkpoint_dir / f"step_{i}"
kbest_manager.add_checkpoint(score, path)
assert len(list(checkpoint_dir.glob("step_*"))) == K
def test_klatest():
def save_fn(path):
with open(path, 'wt') as f:
f.write(f"My path is {str(path)}\n")
K = 5
klatest_manager = KLatest(max_size=K, save_fn=save_fn)
checkpoint_dir = Path("checkpoints")
shutil.rmtree(checkpoint_dir)
checkpoint_dir.mkdir(parents=True)
for i in range(20):
path = checkpoint_dir / f"step_{i}"
klatest_manager.add_checkpoint(path)
assert len(list(checkpoint_dir.glob("step_*"))) == K

22
tests/test_data_table.py Normal file
View File

@ -0,0 +1,22 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from parakeet.datasets.data_tabel import DataTable
def test_audio_dataset():
metadata = [{'name': 'Sonic', 'v': 1000}, {'name': 'Prestol', 'v': 2000}]
converters = {'v': lambda x: x / 1000}
dataset = DataTable(metadata, fields=['v'], converters=converters)
assert dataset[0] == {'v': 1.0}

39
tests/test_optimizer.py Normal file
View File

@ -0,0 +1,39 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
from pathlib import Path
import paddle
from paddle import nn
from paddle.optimizer import Adam
from paddle.optimizer.lr import StepDecay
def test_optimizer():
model1 = nn.Linear(3, 4)
optim1 = Adam(
parameters=model1.parameters(), learning_rate=StepDecay(0.1, 100))
output_dir = Path("temp_test_optimizer")
shutil.rmtree(output_dir, ignore_errors=True)
output_dir.mkdir(exist_ok=True, parents=True)
# model1.set_state_dict(model1.state_dict())
optim1.set_state_dict(optim1.state_dict())
x = paddle.randn([6, 3])
y = model1(x).sum()
y.backward()
optim1.step()

240
tests/test_pwg.py Normal file
View File

@ -0,0 +1,240 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import torch
from timer import timer
from parallel_wavegan.layers import upsample, residual_block
from parallel_wavegan.models import parallel_wavegan as pwgan
from parakeet.utils.layer_tools import summary
from parakeet.utils.profile import synchronize
from parakeet.models.parallel_wavegan import ConvInUpsampleNet, ResidualBlock
from parakeet.models.parallel_wavegan import PWGGenerator, PWGDiscriminator, ResidualPWGDiscriminator
paddle.set_device("gpu:0")
device = torch.device("cuda:0")
def test_convin_upsample_net():
net = ConvInUpsampleNet(
[4, 4, 4, 4],
"LeakyReLU", {"negative_slope": 0.2},
freq_axis_kernel_size=3,
aux_context_window=0)
net2 = upsample.ConvInUpsampleNetwork(
[4, 4, 4, 4],
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.2},
freq_axis_kernel_size=3,
aux_context_window=0).to(device)
summary(net)
for k, v in net2.named_parameters():
print(k, v.shape)
net.state_dict()[k].set_value(v.data.cpu().numpy())
c = paddle.randn([4, 80, 180])
synchronize()
with timer(unit='s') as t:
out = net(c)
synchronize()
print(f"paddle conv_in_upsample_net forward takes {t.elapse}s.")
with timer(unit='s') as t:
out.sum().backward()
synchronize()
print(f"paddle conv_in_upsample_net backward takes {t.elapse}s.")
c_torch = torch.as_tensor(c.numpy()).to(device)
torch.cuda.synchronize()
with timer(unit='s') as t:
out2 = net2(c_torch)
print(f"torch conv_in_upsample_net forward takes {t.elapse}s.")
with timer(unit='s') as t:
out2.sum().backward()
print(f"torch conv_in_upsample_net backward takes {t.elapse}s.")
print("forward check")
print(out.numpy()[0])
print(out2.data.cpu().numpy()[0])
print("backward check")
print(net.conv_in.weight.grad.numpy()[0])
print(net2.conv_in.weight.grad.data.cpu().numpy()[0])
def test_residual_block():
net = ResidualBlock(dilation=9)
net2 = residual_block.ResidualBlock(dilation=9)
summary(net)
summary(net2)
for k, v in net2.named_parameters():
net.state_dict()[k].set_value(v.data.cpu().numpy())
x = paddle.randn([4, 64, 180])
c = paddle.randn([4, 80, 180])
res, skip = net(x, c)
res2, skip2 = net2(torch.as_tensor(x.numpy()), torch.as_tensor(c.numpy()))
print("forward:")
print(res.numpy()[0])
print(res2.data.cpu().numpy()[0])
print(skip.numpy()[0])
print(skip2.data.cpu().numpy()[0])
(res.sum() + skip.sum()).backward()
(res2.sum() + skip2.sum()).backward()
print("backward:")
print(net.conv.weight.grad.numpy().squeeze()[0])
print(net2.conv.weight.grad.data.cpu().numpy().squeeze()[0])
def test_pwg_generator():
net = PWGGenerator(
layers=9,
stacks=3,
upsample_scales=[4, 4, 4, 4],
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.5},
use_weight_norm=True)
net2 = pwgan.ParallelWaveGANGenerator(
layers=9,
stacks=3,
upsample_params={
"upsample_scales": [4, 4, 4, 4],
"nonlinear_activation": "LeakyReLU",
"nonlinear_activation_params": {
"negative_slope": 0.5
}
},
use_weight_norm=True).to(device)
summary(net)
summary(net2)
for k, v in net2.named_parameters():
p = net.state_dict()[k]
if k.endswith("_g"):
p.set_value(v.data.cpu().numpy().reshape([-1]))
else:
p.set_value(v.data.cpu().numpy())
x = paddle.randn([4, 1, 80 * 256])
c = paddle.randn([4, 80, 80 + 4])
synchronize()
with timer(unit='s') as t:
out = net(x, c)
synchronize()
print(f"paddle generator forward takes {t.elapse}s.")
synchronize()
with timer(unit='s') as t:
out.sum().backward()
synchronize()
print(f"paddle generator backward takes {t.elapse}s.")
x_torch = torch.as_tensor(x.numpy()).to(device)
c_torch = torch.as_tensor(c.numpy()).to(device)
torch.cuda.synchronize()
with timer(unit='s') as t:
out2 = net2(x_torch, c_torch)
torch.cuda.synchronize()
print(f"torch generator forward takes {t.elapse}s.")
torch.cuda.synchronize()
with timer(unit='s') as t:
out2.sum().backward()
torch.cuda.synchronize()
print(f"torch generator backward takes {t.elapse}s.")
print("test forward:")
print(out.numpy()[0])
print(out2.data.cpu().numpy()[0])
print("test backward:")
print("wv")
print(net.first_conv.weight_v.grad.numpy().squeeze())
print(net2.first_conv.weight_v.grad.data.cpu().numpy().squeeze())
print("wg")
print(net.first_conv.weight_g.grad.numpy().squeeze())
print(net2.first_conv.weight_g.grad.data.cpu().numpy().squeeze())
# print(out.shape)
def test_pwg_discriminator():
net = PWGDiscriminator()
net2 = pwgan.ParallelWaveGANDiscriminator().to(device)
summary(net)
summary(net2)
for k, v in net2.named_parameters():
p = net.state_dict()[k]
if k.endswith("_g"):
p.set_value(v.data.cpu().numpy().reshape([-1]))
else:
p.set_value(v.data.cpu().numpy())
x = paddle.randn([4, 1, 180 * 256])
synchronize()
with timer() as t:
y = net(x)
synchronize()
print(f"forward takes {t.elapse}s.")
synchronize()
with timer() as t:
y.sum().backward()
synchronize()
print(f"backward takes {t.elapse}s.")
x_torch = torch.as_tensor(x.numpy()).to(device)
torch.cuda.synchronize()
with timer() as t:
y2 = net2(x_torch)
torch.cuda.synchronize()
print(f"forward takes {t.elapse}s.")
torch.cuda.synchronize()
with timer() as t:
y2.sum().backward()
torch.cuda.synchronize()
print(f"backward takes {t.elapse}s.")
print("test forward:")
print(y.numpy()[0])
print(y2.data.cpu().numpy()[0])
print("test backward:")
print(net.conv_layers[0].weight_v.grad.numpy().squeeze())
print(net2.conv_layers[0].weight_v.grad.data.cpu().numpy().squeeze())
def test_residual_pwg_discriminator():
net = ResidualPWGDiscriminator()
net2 = pwgan.ResidualParallelWaveGANDiscriminator()
summary(net)
summary(net2)
for k, v in net2.named_parameters():
p = net.state_dict()[k]
if k.endswith("_g"):
p.set_value(v.data.cpu().numpy().reshape([-1]))
else:
p.set_value(v.data.cpu().numpy())
x = paddle.randn([4, 1, 180 * 256])
y = net(x)
y2 = net2(torch.as_tensor(x.numpy()))
print(y.numpy()[0])
print(y2.data.cpu().numpy()[0])
print(y.shape)

51
tests/test_reporter.py Normal file
View File

@ -0,0 +1,51 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from parakeet.training.reporter import report, scope
from parakeet.training.reporter import Summary, DictSummary
def test_reporter_scope():
first = {}
second = {}
third = {}
with scope(first):
report("first_begin", 1)
with scope(second):
report("second_begin", 2)
with scope(third):
report("third_begin", 3)
report("third_end", 4)
report("seconf_end", 5)
report("first_end", 6)
assert first == {'first_begin': 1, 'first_end': 6}
assert second == {'second_begin': 2, 'seconf_end': 5}
assert third == {'third_begin': 3, 'third_end': 4}
print(first)
print(second)
print(third)
def test_summary():
summary = Summary()
summary.add(1)
summary.add(2)
summary.add(3)
state = summary.make_statistics()
print(state)
np.testing.assert_allclose(
np.array(list(state)), np.array([2.0, np.std([1, 2, 3])]))

55
tests/test_snapshot.py Normal file
View File

@ -0,0 +1,55 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import shutil
import numpy as np
import paddle
from paddle import nn
from paddle.optimizer import Adam
from itertools import count
from parakeet.training.updater import StandardUpdater
from parakeet.training.trainer import Trainer
from parakeet.training.extensions.snapshot import Snapshot
def test_snapshot():
model = nn.Linear(3, 4)
optimizer = Adam(parameters=model.parameters())
# use a simplest iterable object as dataloader
dataloader = count()
# hack the training proecss: training does nothing except increse iteration
updater = StandardUpdater(model, optimizer, dataloader=dataloader)
updater.update_core = lambda x: None
trainer = Trainer(
updater, stop_trigger=(1000, 'iteration'), out='temp_test_snapshot')
shutil.rmtree(trainer.out, ignore_errors=True)
snap = Snapshot(max_size=5)
trigger = (10, 'iteration')
trainer.extend(snap, name='snapshot', trigger=trigger, priority=0)
trainer.run()
checkpoint_dir = trainer.out / "checkpoints"
snapshots = sorted(list(checkpoint_dir.glob("snapshot_iter_*.pdz")))
for snap in snapshots:
print(snap)
assert len(snapshots) == 5
shutil.rmtree(trainer.out)

73
tests/test_stft.py Normal file
View File

@ -0,0 +1,73 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import torch
import librosa
import numpy as np
from parakeet.modules.stft_loss import STFT, MultiResolutionSTFTLoss
from parallel_wavegan.losses import stft_loss as sl
from scipy import signal
def test_stft():
stft = STFT(n_fft=1024, hop_length=256, win_length=1024)
x = paddle.uniform([4, 46080])
S = stft.magnitude(x)
window = signal.get_window('hann', 1024, fftbins=True)
D2 = torch.stft(
torch.as_tensor(x.numpy()),
n_fft=1024,
hop_length=256,
win_length=1024,
window=torch.as_tensor(window))
S2 = (D2**2).sum(-1).sqrt()
S3 = np.abs(
librosa.stft(
x.numpy()[0], n_fft=1024, hop_length=256, win_length=1024))
print(S2.shape)
print(S.numpy()[0])
print(S2.data.cpu().numpy()[0])
print(S3)
def test_torch_stft():
# NOTE: torch.stft use no window by default
x = np.random.uniform(-1.0, 1.0, size=(46080, ))
window = signal.get_window('hann', 1024, fftbins=True)
D2 = torch.stft(
torch.as_tensor(x),
n_fft=1024,
hop_length=256,
win_length=1024,
window=torch.as_tensor(window))
D3 = librosa.stft(
x, n_fft=1024, hop_length=256, win_length=1024, window='hann')
print(D2[:, :, 0].data.cpu().numpy()[:, 30:60])
print(D3.real[:, 30:60])
# print(D3.imag[:, 30:60])
def test_multi_resolution_stft_loss():
net = MultiResolutionSTFTLoss()
net2 = sl.MultiResolutionSTFTLoss()
x = paddle.uniform([4, 46080])
y = paddle.uniform([4, 46080])
sc, m = net(x, y)
sc2, m2 = net2(torch.as_tensor(x.numpy()), torch.as_tensor(y.numpy()))
print(sc.numpy())
print(sc2.data.cpu().numpy())
print(m.numpy())
print(m2.data.cpu().numpy())