Merge pull request #116 from iclementine/fastspeech
Add models/fastspeech2
This commit is contained in:
commit
8224983d10
|
@ -0,0 +1,712 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddle.nn import functional as F
|
||||
from paddle.nn import initializer as I
|
||||
from paddle.fluid.layers import sequence_mask
|
||||
|
||||
from parakeet.modules.positioning import position_encoding
|
||||
from parakeet.modules.attention import (_split_heads, _concat_heads,
|
||||
scaled_dot_product_attention)
|
||||
from parakeet.modules import geometry as geo
|
||||
from parakeet.modules.conv import Conv1dBatchNorm
|
||||
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class FastSpeechFeedForwardTransformer(nn.Layer):
|
||||
def __init__(self,
|
||||
num_layers,
|
||||
model_dim,
|
||||
num_heads,
|
||||
ffn_dim,
|
||||
ffn_kernel_size,
|
||||
attention_dropout=0.,
|
||||
residual_dropout=0.,
|
||||
num_speakers=1,
|
||||
max_position=1000,
|
||||
input_dim: Optional[int]=None,
|
||||
epsilon=1e-5,
|
||||
scheme="post"):
|
||||
super().__init__()
|
||||
# optional input layer
|
||||
input_dim = input_dim or model_dim
|
||||
self.input_dim = input_dim
|
||||
self.model_dim = model_dim
|
||||
if input_dim != model_dim:
|
||||
self.input_fc = nn.Linear(input_dim, model_dim)
|
||||
|
||||
self.pos_embedding = position_encoding(1 + max_position, model_dim)
|
||||
|
||||
self.num_speakers = num_speakers
|
||||
if num_speakers > 1:
|
||||
self.speaker_embedding = nn.Embedding(num_speakers, model_dim)
|
||||
self.speaker_fc = nn.Linear(model_dim, model_dim)
|
||||
|
||||
self.layers = nn.LayerList([
|
||||
FastSpeechFFTBlock(model_dim, num_heads, ffn_dim, ffn_kernel_size,
|
||||
attention_dropout, residual_dropout, epsilon,
|
||||
scheme) for _ in range(num_layers)
|
||||
])
|
||||
|
||||
def forward(self, x, mask, speaker_ids=None):
|
||||
"""
|
||||
x: [B, T, C]
|
||||
mask: [B, 1, T] or [B, T, T]
|
||||
returns: [B, T, C]
|
||||
"""
|
||||
if self.input_dim != self.model_dim:
|
||||
x = self.input_fc(x)
|
||||
|
||||
batch_size, time_steps, _ = x.shape
|
||||
pos_embed = self.pos_embedding[1:1 + time_steps, :]
|
||||
x += pos_embed
|
||||
|
||||
if self.num_speakers > 1:
|
||||
speaker_embedding = self.speaker_embedding(speaker_ids)
|
||||
speaker_feature = F.softplus(self.speaker_fc(speaker_embedding))
|
||||
speaker_feature = paddle.unsqueeze(speaker_feature, 1) # [B, T, C]
|
||||
x += speaker_feature
|
||||
|
||||
for layer in self.layers:
|
||||
x, attn = layer(x, mask)
|
||||
# we do not return attention here
|
||||
return x
|
||||
|
||||
|
||||
class MultiheadAttention(nn.Layer):
|
||||
def __init__(self,
|
||||
model_dim: int,
|
||||
num_heads: int,
|
||||
k_input_dim: Optional[int]=None,
|
||||
v_input_dim: Optional[int]=None,
|
||||
dropout: float=0.):
|
||||
super().__init__()
|
||||
if model_dim % num_heads != 0:
|
||||
raise ValueError("model_dim must be divisible by num_heads")
|
||||
depth = model_dim // num_heads
|
||||
k_input_dim = k_input_dim or model_dim
|
||||
v_input_dim = v_input_dim or model_dim
|
||||
self.wq = nn.Linear(model_dim, model_dim)
|
||||
self.wk = nn.Linear(k_input_dim, model_dim)
|
||||
self.wv = nn.Linear(v_input_dim, model_dim)
|
||||
self.wo = nn.Linear(model_dim, model_dim)
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.model_dim = model_dim
|
||||
self.dropout = dropout
|
||||
|
||||
def forward(self, q, k, v, mask=None):
|
||||
q = _split_heads(self.wq(q), self.num_heads) # (B, h, T, C)
|
||||
k = _split_heads(self.wk(k), self.num_heads)
|
||||
v = _split_heads(self.wv(v), self.num_heads)
|
||||
if mask is not None:
|
||||
mask = paddle.unsqueeze(mask, 1) # unsqueeze for the h dim
|
||||
|
||||
context_vectors, attention_weights = scaled_dot_product_attention(
|
||||
q, k, v, mask, dropout=self.dropout, training=self.training)
|
||||
context_vectors = _concat_heads(context_vectors)
|
||||
context_vectors = self.wo(context_vectors)
|
||||
return context_vectors, attention_weights
|
||||
|
||||
|
||||
class FastSpeechSelfAttentionNorm(nn.Layer):
|
||||
"""Self attention & Layer normalization, both schemes are supported."""
|
||||
|
||||
def __init__(self,
|
||||
model_dim,
|
||||
num_heads,
|
||||
attention_dropout=0.,
|
||||
residual_dropout=0.,
|
||||
epsilon=1e-5,
|
||||
scheme="post"):
|
||||
super().__init__()
|
||||
if scheme not in ["post", "pre"]:
|
||||
raise ValueError("scheme should be 'pre' or 'post'")
|
||||
self.scheme = scheme
|
||||
|
||||
self.attention = MultiheadAttention(
|
||||
model_dim, num_heads, dropout=attention_dropout)
|
||||
self.layer_norm = nn.LayerNorm([model_dim], epsilon=epsilon)
|
||||
self.dropout_layer = nn.Dropout(residual_dropout)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
# [B, T, C], [B, 1, T] -> [B, T, C], [B, T, T]
|
||||
if self.scheme is "post":
|
||||
c, w = self.attention(x, x, x, mask=mask)
|
||||
out = self.layer_norm(x + self.dropout_layer(c))
|
||||
else:
|
||||
normalized_x = self.layer_norm(x)
|
||||
c, w = self.attention(
|
||||
normalized_x, normalized_x, normalized_x, mask=mask)
|
||||
out = x + self.dropout_layer(c)
|
||||
|
||||
c *= paddle.transpose(mask, [0, 2, 1]) # mask padding positions
|
||||
return out, w
|
||||
|
||||
|
||||
class FastSpeechFFN(nn.Layer):
|
||||
"""FFN, it can either be 2 linear or 2 conv1d."""
|
||||
|
||||
def __init__(self, model_dim, hidden_dim, kernel_size=1):
|
||||
super().__init__()
|
||||
if kernel_size == 1:
|
||||
self.layer1 = nn.Linear(model_dim, hidden_dim)
|
||||
self.layer2 = nn.Linear(hidden_dim, model_dim)
|
||||
else:
|
||||
self.layer1 = nn.Conv1D(
|
||||
model_dim,
|
||||
hidden_dim,
|
||||
kernel_size,
|
||||
padding="same",
|
||||
data_format="NLC")
|
||||
self.layer2 = nn.Conv1D(
|
||||
hidden_dim,
|
||||
model_dim,
|
||||
kernel_size,
|
||||
padding="same",
|
||||
data_format="NLC")
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
# [B, T, C], [B, T] -> [B, T, C]
|
||||
h = self.layer1(x)
|
||||
h = F.relu(h) # TODO: use mish here?
|
||||
h = self.layer2(h)
|
||||
h *= paddle.unsqueeze(mask, -1) # mask padding positions
|
||||
return h
|
||||
|
||||
|
||||
class FastSpeechFFNNorm(nn.Layer):
|
||||
def __init__(self,
|
||||
model_dim,
|
||||
hidden_dim,
|
||||
kernel_size,
|
||||
residual_dropout=0.,
|
||||
epsilon=1e-5,
|
||||
scheme="post"):
|
||||
super().__init__()
|
||||
if scheme not in ["post", "pre"]:
|
||||
raise ValueError("scheme should be 'pre' or 'post'")
|
||||
self.scheme = scheme
|
||||
|
||||
self.ffn = FastSpeechFFN(
|
||||
model_dim, hidden_dim, kernel_size=kernel_size)
|
||||
self.layer_norm = nn.LayerNorm([model_dim], epsilon=epsilon)
|
||||
self.dropout_layer = nn.Dropout(residual_dropout)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
if self.scheme == "post":
|
||||
h = self.ffn(x, mask)
|
||||
out = self.layer_norm(x + self.dropout_layer(h))
|
||||
else:
|
||||
normalized_x = self.layer_norm(x)
|
||||
h = self.ffn(normalized_x, mask)
|
||||
out = x + self.dropout_layer(h)
|
||||
out *= paddle.unsqueeze(mask, -1) # mask padding positions
|
||||
return out
|
||||
|
||||
|
||||
class FastSpeechFFTBlock(nn.Layer):
|
||||
def __init__(self,
|
||||
model_dim,
|
||||
num_heads,
|
||||
ffn_dim,
|
||||
ffn_kernel_size,
|
||||
attention_dropout=0.,
|
||||
residual_dropout=0.,
|
||||
epsilon=1e-5,
|
||||
scheme="post"):
|
||||
super().__init__()
|
||||
self.attention = FastSpeechSelfAttentionNorm(
|
||||
model_dim, num_heads, attention_dropout, residual_dropout, epsilon,
|
||||
scheme)
|
||||
self.ffn = FastSpeechFFNNorm(model_dim, ffn_dim, ffn_kernel_size,
|
||||
residual_dropout, epsilon, scheme)
|
||||
|
||||
def forward(self, x, mask):
|
||||
# [B, T, C]
|
||||
# [B, 1, T]
|
||||
c, w = self.attention(x, mask)
|
||||
c = self.ffn(c, paddle.squeeze(mask))
|
||||
return c, w
|
||||
|
||||
|
||||
class FastSpeechDurationPredictor(nn.Layer):
|
||||
def __init__(self,
|
||||
num_layers: int,
|
||||
input_dim: int,
|
||||
hidden_dim: int,
|
||||
kernel_size: int,
|
||||
dropout: float=0.,
|
||||
epsilon: float=1e-5):
|
||||
super().__init__()
|
||||
convs = []
|
||||
for i in range(num_layers):
|
||||
conv = nn.Conv1D(
|
||||
input_dim if i == 0 else hidden_dim,
|
||||
hidden_dim,
|
||||
kernel_size,
|
||||
padding="same",
|
||||
data_format="NLC")
|
||||
layer_norm = nn.LayerNorm([hidden_dim], epsilon=epsilon)
|
||||
act = nn.ReLU6()
|
||||
dropout_layer = nn.Dropout(dropout)
|
||||
convs.extend([conv, layer_norm, act, dropout_layer])
|
||||
self.conv_layers = nn.Sequential(*convs)
|
||||
self.output_fc = nn.Linear(hidden_dim, 1)
|
||||
|
||||
def forward(self, x, mask):
|
||||
# [B, T, C], [B, T] -> [B, T]
|
||||
mask = paddle.unsqueeze(mask, -1)
|
||||
x *= mask
|
||||
|
||||
h = self.conv_layers(x)
|
||||
h = self.output_fc(h)
|
||||
h *= mask
|
||||
h = F.relu6(h).squeeze(-1)
|
||||
return h
|
||||
|
||||
|
||||
class FastSpeechLengthRegulator(nn.Layer):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x, durations):
|
||||
# [B, T, C], [B, T] -> [B, T', C], [B]
|
||||
output_lens = paddle.sum(durations, axis=-1)
|
||||
|
||||
batch_size = x.shape[0]
|
||||
expanded_sequences = []
|
||||
for i in range(batch_size):
|
||||
expanded_sequence = geo.repeat(x[i], durations[i], axis=0)
|
||||
expanded_sequences.append(expanded_sequence)
|
||||
padded_sequence = geo.pad_sequences(expanded_sequences)
|
||||
return padded_sequence, output_lens
|
||||
|
||||
|
||||
class TacotronPostNet(nn.Layer):
|
||||
def __init__(self,
|
||||
num_layers,
|
||||
input_dim,
|
||||
hidden_dim,
|
||||
kernel_size,
|
||||
dropout=0.,
|
||||
momentum=0.9,
|
||||
epsilon=1e-5):
|
||||
super().__init__()
|
||||
self.conv_bns = nn.LayerList()
|
||||
self.num_layers = num_layers
|
||||
for i in range(num_layers):
|
||||
convbn = Conv1dBatchNorm(
|
||||
input_dim if i == 0 else hidden_dim,
|
||||
hidden_dim if i != num_layers - 1 else input_dim,
|
||||
kernel_size,
|
||||
padding="same",
|
||||
data_format="NLC",
|
||||
momentum=momentum,
|
||||
epsilon=epsilon)
|
||||
self.conv_bns.append(convbn)
|
||||
self.dropout_layer = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x, mask):
|
||||
# [B, T, C], [B, T] -> [B, T, C]
|
||||
mask = paddle.unsqueeze(mask, -1)
|
||||
for i, convbn in enumerate(self.conv_bns):
|
||||
x = convbn(x)
|
||||
if i != self.num_layers - 1:
|
||||
x = paddle.tanh(x)
|
||||
x = self.dropout_layer(x)
|
||||
x *= mask
|
||||
return x
|
||||
|
||||
|
||||
class FastSpeechVariancePredictor(nn.Layer):
|
||||
def __init__(self,
|
||||
num_layers: int,
|
||||
input_dim: int,
|
||||
hidden_dim: int,
|
||||
kernel_size: int,
|
||||
num_speakers: int=1,
|
||||
speaker_embedding_size: Optional[int]=None,
|
||||
dropout: float=0.,
|
||||
epsilon: float=1e-5):
|
||||
super().__init__()
|
||||
convs = []
|
||||
for i in range(num_layers):
|
||||
conv = nn.Conv1D(
|
||||
input_dim if i == 0 else hidden_dim,
|
||||
hidden_dim,
|
||||
kernel_size,
|
||||
padding="same",
|
||||
data_format="NLC")
|
||||
act = nn.ReLU()
|
||||
ln = nn.LayerNorm([hidden_dim], epsilon=epsilon)
|
||||
dropout_layer = nn.Dropout(dropout)
|
||||
convs.extend([conv, act, ln, dropout_layer])
|
||||
self.conv_layers = nn.Sequential(*convs)
|
||||
self.output_fc = nn.Linear(hidden_dim, 1)
|
||||
|
||||
self.num_speakers = num_speakers
|
||||
if num_speakers > 1:
|
||||
self.speaker_embedding = nn.Embedding(num_speakers,
|
||||
speaker_embedding_size)
|
||||
self.speaker_fc = nn.Linear(speaker_embedding_size, input_dim)
|
||||
|
||||
def forward(self, x, speaker_ids, mask):
|
||||
# [B, T, C], [B], [B, T] -> [B, T]
|
||||
if self.num_speakers > 1:
|
||||
speaker_embed = self.speaker_embeddings(speaker_ids)
|
||||
speaker_features = F.softplus(self.speaker_fc(speaker_embed))
|
||||
x += paddle.unsqueeze(speaker_features, 1)
|
||||
|
||||
x *= paddle.unsqueeze(mask, -1)
|
||||
|
||||
h = self.conv_layers(x)
|
||||
out = self.output_fc(h)
|
||||
out = paddle.squeeze(-1) * mask
|
||||
return out
|
||||
|
||||
|
||||
class FastSpeech(nn.Layer):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size,
|
||||
num_speakers,
|
||||
# encoder params
|
||||
encoder_num_layers,
|
||||
encoder_dim,
|
||||
encoder_num_heads,
|
||||
encoder_max_position,
|
||||
encoder_ffn_dim,
|
||||
encoder_ffn_kernel_size,
|
||||
# decoder params
|
||||
decoder_num_layers,
|
||||
decoder_dim,
|
||||
decoder_num_heads,
|
||||
decoder_max_position,
|
||||
decoder_ffn_dim,
|
||||
decoder_ffn_kernel_size,
|
||||
# encoder & decoder common
|
||||
attention_dropout,
|
||||
residual_dropout,
|
||||
# duration predictor
|
||||
duration_predictor_num_layers,
|
||||
duration_predictor_dim,
|
||||
duration_predictor_kernel_size,
|
||||
duration_predictor_dropout,
|
||||
# output
|
||||
mel_dim,
|
||||
# postnet
|
||||
postnet_num_layers,
|
||||
postnet_dim,
|
||||
postnet_kernel_size,
|
||||
postnet_dropout,
|
||||
# other
|
||||
padding_idx=0,
|
||||
momentum=0.9,
|
||||
epsilon=1e-5,
|
||||
scheme="post"):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(
|
||||
vocab_size, encoder_dim, padding_idx=padding_idx)
|
||||
self.encoder = FastSpeechFeedForwardTransformer(
|
||||
encoder_num_layers,
|
||||
encoder_dim,
|
||||
encoder_num_heads,
|
||||
encoder_ffn_dim,
|
||||
encoder_ffn_kernel_size,
|
||||
attention_dropout,
|
||||
residual_dropout,
|
||||
num_speakers=num_speakers,
|
||||
max_position=encoder_max_position,
|
||||
epsilon=epsilon,
|
||||
scheme=scheme)
|
||||
self.duration_predictor = FastSpeechDurationPredictor(
|
||||
duration_predictor_num_layers,
|
||||
encoder_dim,
|
||||
duration_predictor_dim,
|
||||
duration_predictor_kernel_size,
|
||||
duration_predictor_dropout,
|
||||
epsilon=epsilon)
|
||||
self.length_regulator = FastSpeechLengthRegulator()
|
||||
self.decoder = FastSpeechFeedForwardTransformer(
|
||||
decoder_num_layers,
|
||||
decoder_dim,
|
||||
decoder_num_heads,
|
||||
decoder_ffn_dim,
|
||||
decoder_ffn_kernel_size,
|
||||
attention_dropout,
|
||||
residual_dropout,
|
||||
num_speakers=num_speakers,
|
||||
max_position=decoder_max_position,
|
||||
input_dim=encoder_dim,
|
||||
epsilon=epsilon,
|
||||
scheme=scheme)
|
||||
self.mel_output_fc = nn.Linear(decoder_dim, mel_dim)
|
||||
self.postnet = TacotronPostNet(
|
||||
postnet_num_layers,
|
||||
mel_dim,
|
||||
postnet_dim,
|
||||
postnet_kernel_size,
|
||||
postnet_dropout,
|
||||
momentum=momentum,
|
||||
epsilon=epsilon)
|
||||
|
||||
def forward(self, text_ids, speaker_ids, durations, text_lens):
|
||||
dtype = paddle.get_default_dtype()
|
||||
encoder_padding_mask = sequence_mask(text_lens, dtype=dtype)
|
||||
encoder_attention_mask = encoder_padding_mask.unsqueeze(1)
|
||||
|
||||
embedding = self.embedding(text_ids)
|
||||
encoder_output = self.encoder(embedding, encoder_attention_mask,
|
||||
speaker_ids)
|
||||
|
||||
# detach the gradient of duration predictor
|
||||
# a difference here
|
||||
predicted_durations = self.duration_predictor(encoder_output.detach(),
|
||||
encoder_padding_mask)
|
||||
|
||||
expanded_outputs, mel_lens = self.length_regulator(encoder_output,
|
||||
durations)
|
||||
decoder_padding_mask = sequence_mask(mel_lens, dtype=dtype)
|
||||
decoder_attention_mask = decoder_padding_mask.unsqueeze(1)
|
||||
|
||||
decoder_ouputs = self.decoder(
|
||||
expanded_outputs,
|
||||
decoder_attention_mask,
|
||||
speaker_ids, )
|
||||
decoder_mel = self.mel_output_fc(decoder_ouputs)
|
||||
postnet_mel = decoder_mel + self.postnet(decoder_mel,
|
||||
decoder_padding_mask)
|
||||
|
||||
return decoder_mel, postnet_mel, predicted_durations
|
||||
|
||||
def inference(self, text_ids, speaker_ids, text_lens, speed_ratios):
|
||||
dtype = paddle.get_default_dtype()
|
||||
encoder_padding_mask = sequence_mask(text_lens, dtype=dtype)
|
||||
encoder_attention_mask = encoder_padding_mask.unsqueeze(1)
|
||||
|
||||
embedding = self.embedding(text_ids)
|
||||
encoder_output = self.encoder(embedding, encoder_attention_mask,
|
||||
speaker_ids)
|
||||
|
||||
# detach the gradient flow of duration predictor
|
||||
# a difference here
|
||||
predicted_log_durations = self.duration_predictor(
|
||||
encoder_output.detach(), encoder_padding_mask)
|
||||
predicted_durations = paddle.exp(predicted_log_durations) - 1.
|
||||
|
||||
if speed_ratios is None:
|
||||
speed_ratios = paddle.ones([1], dtype=dtype)
|
||||
speed_ratios = paddle.unsqueeze(speed_ratios, -1)
|
||||
predicted_durations = paddle.round(predicted_durations *
|
||||
speed_ratios).astype("int32")
|
||||
|
||||
expanded_outputs, mel_lens = self.length_regulator(encoder_output,
|
||||
predicted_durations)
|
||||
decoder_padding_mask = sequence_mask(mel_lens, dtype=dtype)
|
||||
decoder_attention_mask = decoder_padding_mask.unsqueeze(1)
|
||||
|
||||
decoder_ouputs = self.decoder(expanded_outputs, decoder_attention_mask,
|
||||
speaker_ids)
|
||||
decoder_mel = self.mel_output_fc(decoder_ouputs)
|
||||
postnet_mel = decoder_mel + self.postnet(decoder_mel,
|
||||
decoder_padding_mask)
|
||||
|
||||
return decoder_mel, postnet_mel, predicted_durations
|
||||
|
||||
|
||||
# TODO: implement FastSpeech2
|
||||
class FastSpeech2(nn.Layer):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size,
|
||||
num_speakers,
|
||||
# encoder params
|
||||
encoder_num_layers,
|
||||
encoder_dim,
|
||||
encoder_num_heads,
|
||||
encoder_max_position,
|
||||
encoder_ffn_dim,
|
||||
encoder_ffn_kernel_size,
|
||||
# decoder params
|
||||
decoder_num_layers,
|
||||
decoder_dim,
|
||||
decoder_num_heads,
|
||||
decoder_max_position,
|
||||
decoder_ffn_dim,
|
||||
decoder_ffn_kernel_size,
|
||||
# encoder & decoder common
|
||||
attention_dropout,
|
||||
residual_dropout,
|
||||
# duration predictor
|
||||
duration_predictor_num_layers,
|
||||
duration_predictor_dim,
|
||||
duration_predictor_kernel_size,
|
||||
duration_predictor_dropout,
|
||||
# output
|
||||
mel_dim,
|
||||
# postnet
|
||||
postnet_num_layers,
|
||||
postnet_dim,
|
||||
postnet_kernel_size,
|
||||
postnet_dropout,
|
||||
# variance predictor
|
||||
variance_predictor_num_layers,
|
||||
variance_predictor_dim,
|
||||
variance_predictor_kernel_size,
|
||||
variance_predictor_dropout,
|
||||
# other
|
||||
padding_idx=0,
|
||||
momentum=0.9,
|
||||
epsilon=1e-5,
|
||||
scheme="post"):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(
|
||||
vocab_size, encoder_dim, padding_idx=padding_idx)
|
||||
self.encoder = FastSpeechFeedForwardTransformer(
|
||||
encoder_num_layers,
|
||||
encoder_dim,
|
||||
encoder_num_heads,
|
||||
encoder_ffn_dim,
|
||||
encoder_ffn_kernel_size,
|
||||
attention_dropout,
|
||||
residual_dropout,
|
||||
num_speakers=num_speakers,
|
||||
max_position=encoder_max_position,
|
||||
epsilon=epsilon,
|
||||
scheme=scheme)
|
||||
self.duration_predictor = FastSpeechDurationPredictor(
|
||||
duration_predictor_num_layers,
|
||||
encoder_dim,
|
||||
duration_predictor_dim,
|
||||
duration_predictor_kernel_size,
|
||||
duration_predictor_dropout,
|
||||
epsilon=epsilon)
|
||||
self.length_regulator = FastSpeechLengthRegulator()
|
||||
self.decoder = FastSpeechFeedForwardTransformer(
|
||||
decoder_num_layers,
|
||||
decoder_dim,
|
||||
decoder_num_heads,
|
||||
decoder_ffn_dim,
|
||||
decoder_ffn_kernel_size,
|
||||
attention_dropout,
|
||||
residual_dropout,
|
||||
num_speakers=num_speakers,
|
||||
max_position=decoder_max_position,
|
||||
input_dim=encoder_dim,
|
||||
epsilon=epsilon,
|
||||
scheme=scheme)
|
||||
self.mel_output_fc = nn.Linear(decoder_dim, mel_dim)
|
||||
self.postnet = TacotronPostNet(
|
||||
postnet_num_layers,
|
||||
mel_dim,
|
||||
postnet_dim,
|
||||
postnet_kernel_size,
|
||||
postnet_dropout,
|
||||
momentum=momentum,
|
||||
epsilon=epsilon)
|
||||
# difference here?
|
||||
self.f0_predictor = FastSpeechVariancePredictor(
|
||||
variance_predictor_num_layers,
|
||||
embed_dim,
|
||||
variance_predictor_dim,
|
||||
variancce_predictor_kernel_size,
|
||||
num_speakers,
|
||||
speaker_embedding_size=embed_dim)
|
||||
self.energy_predictor = FastSpeechVariancePredictor(
|
||||
variance_predictor_num_layers,
|
||||
embed_dim,
|
||||
variance_predictor_dim,
|
||||
variancce_predictor_kernel_size,
|
||||
num_speakers,
|
||||
speaker_embedding_size=embed_dim)
|
||||
#self.duration_predictor = FastSpeechVariancePredictor(
|
||||
#variance_predictor_num_layers,
|
||||
#embed_dim,
|
||||
#variance_predictor_dim,
|
||||
#variancce_predictor_kernel_size,
|
||||
#num_speakers,
|
||||
#speaker_embedding_size=embed_dim)
|
||||
self.f0_embedding = nn.Conv1D(
|
||||
1, encoder_dim, kernel_size=9, padding="same", data_format="NLC")
|
||||
self.f0_dropout_layer = nn.Dropout(0.5)
|
||||
self.energy_embeddings = nn.Conv1D(
|
||||
1, encoder_dim, kernel_size=9, padding="same", data_format="NLC")
|
||||
self.energy_dropout = nn.Dropout(0.5)
|
||||
|
||||
def forward(self, text_ids, speaker_ids, durations, text_lens):
|
||||
dtype = paddle.get_default_dtype()
|
||||
encoder_padding_mask = sequence_mask(text_lens, dtype=dtype)
|
||||
encoder_attention_mask = encoder_padding_mask.unsqueeze(1)
|
||||
|
||||
embedding = self.embedding(text_ids)
|
||||
encoder_output = self.encoder(embedding, encoder_attention_mask,
|
||||
speaker_ids)
|
||||
|
||||
# detach the gradient of duration predictor
|
||||
# a difference here
|
||||
predicted_durations = self.duration_predictor(encoder_output.detach(),
|
||||
encoder_padding_mask)
|
||||
|
||||
expanded_outputs, mel_lens = self.length_regulator(encoder_output,
|
||||
durations)
|
||||
decoder_padding_mask = sequence_mask(mel_lens, dtype=dtype)
|
||||
decoder_attention_mask = decoder_padding_mask.unsqueeze(1)
|
||||
|
||||
decoder_ouputs = self.decoder(
|
||||
expanded_outputs,
|
||||
decoder_attention_mask,
|
||||
speaker_ids, )
|
||||
decoder_mel = self.mel_output_fc(decoder_ouputs)
|
||||
postnet_mel = decoder_mel + self.postnet(decoder_mel,
|
||||
decoder_padding_mask)
|
||||
|
||||
return decoder_mel, postnet_mel, predicted_durations
|
||||
|
||||
def inference(self, text_ids, speaker_ids, text_lens, speed_ratios):
|
||||
dtype = paddle.get_default_dtype()
|
||||
encoder_padding_mask = sequence_mask(text_lens, dtype=dtype)
|
||||
encoder_attention_mask = encoder_padding_mask.unsqueeze(1)
|
||||
|
||||
embedding = self.embedding(text_ids)
|
||||
encoder_output = self.encoder(embedding, encoder_attention_mask,
|
||||
speaker_ids)
|
||||
|
||||
# detach the gradient flow of duration predictor
|
||||
# a difference here
|
||||
predicted_log_durations = self.duration_predictor(
|
||||
encoder_output.detach(), encoder_padding_mask)
|
||||
predicted_durations = paddle.exp(predicted_log_durations) - 1.
|
||||
|
||||
if speed_ratios is None:
|
||||
speed_ratios = paddle.ones([1], dtype=dtype)
|
||||
speed_ratios = paddle.unsqueeze(speed_ratios, -1)
|
||||
predicted_durations = paddle.round(predicted_durations *
|
||||
speed_ratios).astype("int32")
|
||||
|
||||
expanded_outputs, mel_lens = self.length_regulator(encoder_output,
|
||||
predicted_durations)
|
||||
decoder_padding_mask = sequence_mask(mel_lens, dtype=dtype)
|
||||
decoder_attention_mask = decoder_padding_mask.unsqueeze(1)
|
||||
|
||||
decoder_ouputs = self.decoder(expanded_outputs, decoder_attention_mask,
|
||||
speaker_ids)
|
||||
decoder_mel = self.mel_output_fc(decoder_ouputs)
|
||||
postnet_mel = decoder_mel + self.postnet(decoder_mel,
|
||||
decoder_padding_mask)
|
||||
|
||||
return decoder_mel, postnet_mel, predicted_durations
|
|
@ -0,0 +1,162 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Callable, Mapping, List
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class KBest(object):
|
||||
"""
|
||||
A utility class to help save the hard drive by only keeping K best
|
||||
checkpoints.
|
||||
|
||||
To be as modularized as possible, this class does not assume anything like
|
||||
a Trainer class or anything like a checkpoint directory, it does not know
|
||||
about the model or the optimizer, etc.
|
||||
|
||||
It is basically a dynamically mantained K-bset Mapping. When a new item is
|
||||
added to the map, save_fn is called. And when an item is removed from the
|
||||
map, del_fn is called. `save_fn` and `del_fn` takes a Path object as input
|
||||
and returns nothing.
|
||||
|
||||
Though it is designed to control checkpointing behaviors, it can be used
|
||||
to do something else if you pass some save_fn and del_fn.
|
||||
|
||||
Example
|
||||
--------
|
||||
|
||||
>>> from pathlib import Path
|
||||
>>> import shutil
|
||||
>>> import paddle
|
||||
>>> from paddle import nn
|
||||
|
||||
>>> model = nn.Linear(2, 3)
|
||||
>>> def save_model(path):
|
||||
... paddle.save(model.state_dict(), path)
|
||||
|
||||
>>> kbest_manager = KBest(max_size=5, save_fn=save_model)
|
||||
>>> checkpoint_dir = Path("checkpoints")
|
||||
>>> shutil.rmtree(checkpoint_dir)
|
||||
>>> checkpoint_dir.mkdir(parents=True)
|
||||
>>> a = np.random.rand(20)
|
||||
>>> for i, score in enumerate(a):
|
||||
... path = checkpoint_dir / f"step_{i}"
|
||||
... kbest_manager.add_checkpoint(score, path)
|
||||
>>> assert len(list(checkpoint_dir.glob("step_*"))) == 5
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
max_size: int=5,
|
||||
save_fn: Callable[[Path], None]=None,
|
||||
del_fn: Callable[[Path], None]=lambda f: f.unlink()):
|
||||
self.best_records: Mapping[Path, float] = {}
|
||||
self.save_fn = save_fn
|
||||
self.del_fn = del_fn
|
||||
self.max_size = max_size
|
||||
self._save_all = (max_size == -1)
|
||||
|
||||
def should_save(self, metric: float) -> bool:
|
||||
if not self.full():
|
||||
return True
|
||||
|
||||
# already full
|
||||
worst_record_path = max(self.best_records, key=self.best_records.get)
|
||||
worst_metric = self.best_records[worst_record_path]
|
||||
return metric < worst_metric
|
||||
|
||||
def full(self):
|
||||
return (not self._save_all) and len(self.best_records) == self.max_size
|
||||
|
||||
def add_checkpoint(self, metric, path):
|
||||
if self.should_save(metric):
|
||||
self.save_checkpoint_and_update(metric, path)
|
||||
|
||||
def save_checkpoint_and_update(self, metric, path):
|
||||
# remove the worst
|
||||
if self.full():
|
||||
worst_record_path = max(self.best_records,
|
||||
key=self.best_records.get)
|
||||
self.best_records.pop(worst_record_path)
|
||||
self.del_fn(worst_record_path)
|
||||
|
||||
# add the new one
|
||||
self.save_fn(path)
|
||||
self.best_records[path] = metric
|
||||
|
||||
|
||||
class KLatest(object):
|
||||
"""
|
||||
A utility class to help save the hard drive by only keeping K latest
|
||||
checkpoints.
|
||||
|
||||
To be as modularized as possible, this class does not assume anything like
|
||||
a Trainer class or anything like a checkpoint directory, it does not know
|
||||
about the model or the optimizer, etc.
|
||||
|
||||
It is basically a dynamically mantained Queue. When a new item is
|
||||
added to the queue, save_fn is called. And when an item is removed from the
|
||||
queue, del_fn is called. `save_fn` and `del_fn` takes a Path object as input
|
||||
and returns nothing.
|
||||
|
||||
Though it is designed to control checkpointing behaviors, it can be used
|
||||
to do something else if you pass some save_fn and del_fn.
|
||||
|
||||
Example
|
||||
--------
|
||||
|
||||
>>> from pathlib import Path
|
||||
>>> import shutil
|
||||
>>> import paddle
|
||||
>>> from paddle import nn
|
||||
|
||||
>>> model = nn.Linear(2, 3)
|
||||
>>> def save_model(path):
|
||||
... paddle.save(model.state_dict(), path)
|
||||
|
||||
>>> klatest_manager = KLatest(max_size=5, save_fn=save_model)
|
||||
>>> checkpoint_dir = Path("checkpoints")
|
||||
>>> shutil.rmtree(checkpoint_dir)
|
||||
>>> checkpoint_dir.mkdir(parents=True)
|
||||
>>> for i in range(20):
|
||||
... path = checkpoint_dir / f"step_{i}"
|
||||
... klatest_manager.add_checkpoint(path)
|
||||
>>> assert len(list(checkpoint_dir.glob("step_*"))) == 5
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
max_size: int=5,
|
||||
save_fn: Callable[[Path], None]=None,
|
||||
del_fn: Callable[[Path], None]=lambda f: f.unlink()):
|
||||
self.latest_records: List[Path] = []
|
||||
self.save_fn = save_fn
|
||||
self.del_fn = del_fn
|
||||
self.max_size = max_size
|
||||
self._save_all = (max_size == -1)
|
||||
|
||||
def full(self):
|
||||
return (
|
||||
not self._save_all) and len(self.latest_records) == self.max_size
|
||||
|
||||
def add_checkpoint(self, path):
|
||||
self.save_checkpoint_and_update(path)
|
||||
|
||||
def save_checkpoint_and_update(self, path):
|
||||
# remove the earist
|
||||
if self.full():
|
||||
eariest_record_path = self.latest_records.pop(0)
|
||||
self.del_fn(eariest_record_path)
|
||||
|
||||
# add the new one
|
||||
self.save_fn(path)
|
||||
self.latest_records.append(path)
|
|
@ -0,0 +1,52 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
|
||||
import numpy as np
|
||||
from parakeet.training.checkpoint import KBest, KLatest
|
||||
|
||||
|
||||
def test_kbest():
|
||||
def save_fn(path):
|
||||
with open(path, 'wt') as f:
|
||||
f.write(f"My path is {str(path)}\n")
|
||||
|
||||
K = 1
|
||||
kbest_manager = KBest(max_size=K, save_fn=save_fn)
|
||||
checkpoint_dir = Path("checkpoints")
|
||||
shutil.rmtree(checkpoint_dir)
|
||||
checkpoint_dir.mkdir(parents=True)
|
||||
a = np.random.rand(20)
|
||||
for i, score in enumerate(a):
|
||||
path = checkpoint_dir / f"step_{i}"
|
||||
kbest_manager.add_checkpoint(score, path)
|
||||
assert len(list(checkpoint_dir.glob("step_*"))) == K
|
||||
|
||||
|
||||
def test_klatest():
|
||||
def save_fn(path):
|
||||
with open(path, 'wt') as f:
|
||||
f.write(f"My path is {str(path)}\n")
|
||||
|
||||
K = 5
|
||||
klatest_manager = KLatest(max_size=K, save_fn=save_fn)
|
||||
checkpoint_dir = Path("checkpoints")
|
||||
shutil.rmtree(checkpoint_dir)
|
||||
checkpoint_dir.mkdir(parents=True)
|
||||
for i in range(20):
|
||||
path = checkpoint_dir / f"step_{i}"
|
||||
klatest_manager.add_checkpoint(path)
|
||||
assert len(list(checkpoint_dir.glob("step_*"))) == K
|
Loading…
Reference in New Issue