add_TransformerTTS
This commit is contained in:
parent
fd9e198ab6
commit
8a9bbc2634
|
@ -0,0 +1,20 @@
|
|||
audio:
|
||||
num_mels: 80
|
||||
n_fft: 2048
|
||||
sr: 22050
|
||||
preemphasis: 0.97
|
||||
hop_length: 275
|
||||
win_length: 1102
|
||||
power: 1.2
|
||||
min_level_db: -100
|
||||
ref_level_db: 20
|
||||
outputs_per_step: 1
|
||||
|
||||
max_len: 50
|
||||
transformer_step: 1
|
||||
postnet_step: 1
|
||||
use_gpu: True
|
||||
|
||||
checkpoint_path: ./checkpoint
|
||||
log_dir: ./log
|
||||
sample_path: ./sample
|
|
@ -0,0 +1,27 @@
|
|||
audio:
|
||||
num_mels: 80
|
||||
n_fft: 2048
|
||||
sr: 22050
|
||||
preemphasis: 0.97
|
||||
hop_length: 275
|
||||
win_length: 1102
|
||||
power: 1.2
|
||||
min_level_db: -100
|
||||
ref_level_db: 20
|
||||
outputs_per_step: 1
|
||||
|
||||
network:
|
||||
hidden_size: 256
|
||||
embedding_size: 512
|
||||
|
||||
|
||||
batch_size: 32
|
||||
epochs: 10000
|
||||
lr: 0.001
|
||||
save_step: 500
|
||||
use_gpu: True
|
||||
use_data_parallel: False
|
||||
|
||||
data_path: ../../../dataset/LJSpeech-1.1
|
||||
save_path: ./checkpoint
|
||||
log_dir: ./log
|
|
@ -0,0 +1,32 @@
|
|||
audio:
|
||||
num_mels: 80
|
||||
n_fft: 2048
|
||||
sr: 22050
|
||||
preemphasis: 0.97
|
||||
hop_length: 275
|
||||
win_length: 1102
|
||||
power: 1.2
|
||||
min_level_db: -100
|
||||
ref_level_db: 20
|
||||
outputs_per_step: 1
|
||||
|
||||
network:
|
||||
hidden_size: 256
|
||||
embedding_size: 512
|
||||
|
||||
|
||||
batch_size: 32
|
||||
epochs: 10000
|
||||
lr: 0.001
|
||||
save_step: 500
|
||||
image_step: 2000
|
||||
use_gpu: True
|
||||
use_data_parallel: False
|
||||
|
||||
data_path: ../../../dataset/LJSpeech-1.1
|
||||
save_path: ./checkpoint
|
||||
log_dir: ./log
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,170 @@
|
|||
import math
|
||||
import numpy as np
|
||||
|
||||
import paddle
|
||||
from paddle import fluid
|
||||
import paddle.fluid.dygraph as dg
|
||||
|
||||
|
||||
class Conv1D(dg.Layer):
|
||||
"""
|
||||
A convolution 1D block implemented with Conv2D. Form simplicity and
|
||||
ensuring the output has the same length as the input, it does not allow
|
||||
stride > 1.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
name_scope,
|
||||
in_channels,
|
||||
num_filters,
|
||||
filter_size=3,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
stride=1,
|
||||
groups=None,
|
||||
param_attr=None,
|
||||
bias_attr=None,
|
||||
use_cudnn=True,
|
||||
act=None,
|
||||
data_format='NCT',
|
||||
dtype="float32"):
|
||||
super(Conv1D, self).__init__(name_scope, dtype=dtype)
|
||||
|
||||
self.padding = padding
|
||||
self.in_channels = in_channels
|
||||
self.num_filters = num_filters
|
||||
self.filter_size = filter_size
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.padding = padding
|
||||
self.act = act
|
||||
self.data_format = data_format
|
||||
|
||||
self.conv = dg.Conv2D(
|
||||
self.full_name(),
|
||||
num_filters=num_filters,
|
||||
filter_size=(1, filter_size),
|
||||
stride=(1, stride),
|
||||
dilation=(1, dilation),
|
||||
padding=(0, padding),
|
||||
groups=groups,
|
||||
param_attr=param_attr,
|
||||
bias_attr=bias_attr,
|
||||
use_cudnn=use_cudnn,
|
||||
act=act,
|
||||
dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
|
||||
input channels.
|
||||
Returns:
|
||||
x (Variable): Shape(B, C_out, 1, T), the outputs, where C_out means
|
||||
output channels (num_filters).
|
||||
"""
|
||||
if self.data_format == 'NTC':
|
||||
x = fluid.layers.transpose(x, [0, 2, 1])
|
||||
x = fluid.layers.unsqueeze(x, [2])
|
||||
x = self.conv(x)
|
||||
x = fluid.layers.squeeze(x, [2])
|
||||
if self.data_format == 'NTC':
|
||||
x = fluid.layers.transpose(x, [0, 2, 1])
|
||||
return x
|
||||
|
||||
class Pool1D(dg.Layer):
|
||||
"""
|
||||
A Pool 1D block implemented with Pool2D.
|
||||
"""
|
||||
def __init__(self,
|
||||
name_scope,
|
||||
pool_size=-1,
|
||||
pool_type='max',
|
||||
pool_stride=1,
|
||||
pool_padding=0,
|
||||
global_pooling=False,
|
||||
use_cudnn=True,
|
||||
ceil_mode=False,
|
||||
exclusive=True,
|
||||
data_format='NCT',
|
||||
dtype='float32'):
|
||||
super(Pool1D, self).__init__(name_scope, dtype=dtype)
|
||||
self.pool_size = pool_size
|
||||
self.pool_type = pool_type
|
||||
self.pool_stride = pool_stride
|
||||
self.pool_padding = pool_padding
|
||||
self.global_pooling = global_pooling
|
||||
self.use_cudnn = use_cudnn
|
||||
self.ceil_mode = ceil_mode
|
||||
self.exclusive = exclusive
|
||||
self.data_format = data_format
|
||||
self.dtype = dtype
|
||||
|
||||
|
||||
self.pool2d = dg.Pool2D(self.full_name(), [1,pool_size], pool_type = pool_type,
|
||||
pool_stride = [1,pool_stride], pool_padding = [0, pool_padding],
|
||||
global_pooling = global_pooling, use_cudnn = use_cudnn,
|
||||
ceil_mode = ceil_mode, exclusive = exclusive, dtype = dtype)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x (Variable): Shape(B, C_in, 1, T), the input, where C_in means
|
||||
input channels.
|
||||
Returns:
|
||||
x (Variable): Shape(B, C_out, 1, T), the outputs, where C_out means
|
||||
output channels (num_filters).
|
||||
"""
|
||||
if self.data_format == 'NTC':
|
||||
x = fluid.layers.transpose(x, [0, 2, 1])
|
||||
x = fluid.layers.unsqueeze(x, [2])
|
||||
x = self.pool2d(x)
|
||||
x = fluid.layers.squeeze(x, [2])
|
||||
if self.data_format == 'NTC':
|
||||
x = fluid.layers.transpose(x, [0, 2, 1])
|
||||
return x
|
||||
|
||||
class DynamicGRU(dg.Layer):
|
||||
def __init__(self,
|
||||
scope_name,
|
||||
size,
|
||||
param_attr=None,
|
||||
bias_attr=None,
|
||||
is_reverse=False,
|
||||
gate_activation='sigmoid',
|
||||
candidate_activation='tanh',
|
||||
h_0=None,
|
||||
origin_mode=False,
|
||||
init_size=None):
|
||||
super(DynamicGRU, self).__init__(scope_name)
|
||||
self.gru_unit = dg.GRUUnit(
|
||||
self.full_name(),
|
||||
size * 3,
|
||||
param_attr=param_attr,
|
||||
bias_attr=bias_attr,
|
||||
activation=candidate_activation,
|
||||
gate_activation=gate_activation,
|
||||
origin_mode=origin_mode)
|
||||
self.size = size
|
||||
self.h_0 = h_0
|
||||
self.is_reverse = is_reverse
|
||||
|
||||
def forward(self, inputs):
|
||||
hidden = self.h_0
|
||||
res = []
|
||||
for i in range(inputs.shape[1]):
|
||||
if self.is_reverse:
|
||||
i = inputs.shape[1] - 1 - i
|
||||
input_ = inputs[:, i:i + 1, :]
|
||||
input_ = fluid.layers.reshape(
|
||||
input_, [-1, input_.shape[2]], inplace=False)
|
||||
hidden, reset, gate = self.gru_unit(input_, hidden)
|
||||
hidden_ = fluid.layers.reshape(
|
||||
hidden, [-1, 1, hidden.shape[1]], inplace=False)
|
||||
res.append(hidden_)
|
||||
if self.is_reverse:
|
||||
res = res[::-1]
|
||||
res = fluid.layers.concat(res, axis=1)
|
||||
return res
|
||||
|
|
@ -0,0 +1,525 @@
|
|||
import math
|
||||
from parakeet.g2p.text.symbols import symbols
|
||||
import paddle.fluid.dygraph as dg
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.layers as layers
|
||||
from layers import Conv1D, Pool1D, DynamicGRU
|
||||
import numpy as np
|
||||
|
||||
class FC(dg.Layer):
|
||||
def __init__(self, name_scope, in_features, out_features, is_bias=True, dtype="float32", gain=1):
|
||||
super(FC, self).__init__(name_scope)
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.is_bias = is_bias
|
||||
self.dtype = dtype
|
||||
self.gain = gain
|
||||
|
||||
self.weight = self.create_parameter(fluid.ParamAttr(name='weight'), shape=(in_features, out_features),
|
||||
dtype=dtype,
|
||||
default_initializer = fluid.initializer.XavierInitializer())
|
||||
#self.weight = gain * self.weight
|
||||
# mind the implicit conversion to ParamAttr for many cases
|
||||
if is_bias is not False:
|
||||
k = math.sqrt(1 / in_features)
|
||||
self.bias = self.create_parameter(fluid.ParamAttr(name='bias'), shape=(out_features, ),
|
||||
is_bias=True,
|
||||
dtype=dtype,
|
||||
default_initializer = fluid.initializer.Uniform(low=-k, high=k))
|
||||
|
||||
# 默认初始化权重使用 Xavier 的方法,偏置使用均匀分布,范围是(-\sqrt{k},/sqrt{k}),k=1/infeature
|
||||
|
||||
def forward(self, x):
|
||||
x = fluid.layers.matmul(x, self.weight)
|
||||
if hasattr(self, "bias"):
|
||||
x = fluid.layers.elementwise_add(x, self.bias)
|
||||
return x
|
||||
|
||||
class Conv(dg.Layer):
|
||||
def __init__(self, name_scope, in_channels, out_channels, filter_size=1,
|
||||
padding=0, dilation=1, stride=1, use_cudnn=True,
|
||||
data_format="NCT", is_bias=True, gain=1):
|
||||
super(Conv, self).__init__(name_scope)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.filter_size = filter_size
|
||||
self.padding = padding
|
||||
self.dilation = dilation
|
||||
self.stride = stride
|
||||
self.use_cudnn = use_cudnn
|
||||
self.data_format = data_format
|
||||
self.is_bias = is_bias
|
||||
self.gain = gain
|
||||
|
||||
self.weight_attr = fluid.ParamAttr(name='weight', initializer=fluid.initializer.XavierInitializer())
|
||||
self.bias_attr = None
|
||||
if is_bias is not False:
|
||||
k = math.sqrt(1 / in_channels)
|
||||
self.bias_attr = fluid.ParamAttr(name='bias', initializer=fluid.initializer.Uniform(low=-k, high=k))
|
||||
|
||||
self.conv = Conv1D( self.full_name(),
|
||||
in_channels = in_channels,
|
||||
num_filters = out_channels,
|
||||
filter_size = filter_size,
|
||||
padding = padding,
|
||||
dilation = dilation,
|
||||
stride = stride,
|
||||
param_attr = self.weight_attr,
|
||||
bias_attr = self.bias_attr,
|
||||
use_cudnn = use_cudnn,
|
||||
data_format = data_format)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
class EncoderPrenet(dg.Layer):
|
||||
def __init__(self, name_scope, embedding_size, num_hidden, use_cudnn=True):
|
||||
super(EncoderPrenet, self).__init__(name_scope)
|
||||
self.embedding_size = embedding_size
|
||||
self.num_hidden = num_hidden
|
||||
self.use_cudnn = use_cudnn
|
||||
self.embedding = dg.Embedding(self.full_name(),
|
||||
size = [len(symbols), embedding_size],
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
padding_idx = None)
|
||||
self.conv1 = Conv(self.full_name(),
|
||||
in_channels = embedding_size,
|
||||
out_channels = num_hidden,
|
||||
filter_size = 5,
|
||||
padding = int(np.floor(5/2)),
|
||||
use_cudnn = use_cudnn,
|
||||
data_format = "NCT",
|
||||
gain = math.sqrt(2))
|
||||
self.conv2 = Conv(self.full_name(),
|
||||
in_channels = num_hidden,
|
||||
out_channels = num_hidden,
|
||||
filter_size = 5,
|
||||
padding = int(np.floor(5/2)),
|
||||
use_cudnn = use_cudnn,
|
||||
data_format = "NCT",
|
||||
gain = math.sqrt(2))
|
||||
self.conv3 = Conv(self.full_name(),
|
||||
in_channels = num_hidden,
|
||||
out_channels = num_hidden,
|
||||
filter_size = 5,
|
||||
padding = int(np.floor(5/2)),
|
||||
use_cudnn = use_cudnn,
|
||||
data_format = "NCT",
|
||||
gain = math.sqrt(2))
|
||||
|
||||
self.batch_norm1 = dg.BatchNorm(self.full_name(), num_hidden,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
moving_mean_name = 'moving_mean',
|
||||
moving_variance_name = 'moving_var',
|
||||
data_layout='NCHW')
|
||||
self.batch_norm2 = dg.BatchNorm(self.full_name(), num_hidden,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
moving_mean_name = 'moving_mean',
|
||||
moving_variance_name = 'moving_var',
|
||||
data_layout='NCHW')
|
||||
self.batch_norm3 = dg.BatchNorm(self.full_name(), num_hidden,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
moving_mean_name = 'moving_mean',
|
||||
moving_variance_name = 'moving_var',
|
||||
data_layout='NCHW')
|
||||
|
||||
self.projection = FC(self.full_name(), num_hidden, num_hidden)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.embedding(fluid.layers.unsqueeze(x, axes=[-1])) #(batch_size, seq_len, embending_size)
|
||||
x = layers.transpose(x,[0,2,1])
|
||||
x = layers.dropout(layers.relu(self.batch_norm1(self.conv1(x))), 0.2)
|
||||
x = layers.dropout(layers.relu(self.batch_norm2(self.conv2(x))), 0.2)
|
||||
x = layers.dropout(layers.relu(self.batch_norm3(self.conv3(x))), 0.2)
|
||||
x = layers.transpose(x,[0,2,1]) #(N,T,C)
|
||||
x = self.projection(x)
|
||||
return x
|
||||
|
||||
class FFN(dg.Layer):
|
||||
def __init__(self, name_scope, num_hidden, use_cudnn=True):
|
||||
super(FFN, self).__init__(name_scope)
|
||||
self.num_hidden = num_hidden
|
||||
self.use_cudnn = use_cudnn
|
||||
self.w_1 = Conv(self.full_name(),
|
||||
in_channels = num_hidden,
|
||||
out_channels = num_hidden * 4,
|
||||
filter_size = 1,
|
||||
use_cudnn = use_cudnn,
|
||||
data_format = "NCT",
|
||||
gain = math.sqrt(2))
|
||||
self.w_2 = Conv(self.full_name(),
|
||||
in_channels = num_hidden * 4,
|
||||
out_channels = num_hidden,
|
||||
filter_size = 1,
|
||||
use_cudnn = use_cudnn,
|
||||
data_format = "NCT",
|
||||
gain = math.sqrt(2))
|
||||
self.layer_norm = dg.LayerNorm(self.full_name(), begin_norm_axis=2)
|
||||
|
||||
def forward(self, input):
|
||||
#FFN Networt
|
||||
x = layers.transpose(input, [0,2,1])
|
||||
x = self.w_2(layers.relu(self.w_1(x)))
|
||||
x = layers.transpose(x,[0,2,1])
|
||||
|
||||
# dropout
|
||||
# x = layers.dropout(x, 0.1)
|
||||
# not sure where dropout should be placed, in paper should before residual,
|
||||
# but the diagonal alignment did not appear correctly in the attention plot.
|
||||
|
||||
# residual connection
|
||||
x = x + input
|
||||
|
||||
|
||||
#layer normalization
|
||||
x = self.layer_norm(x)
|
||||
|
||||
return x
|
||||
|
||||
class DecoderPrenet(dg.Layer):
|
||||
def __init__(self, name_scope, input_size, hidden_size, output_size, dropout_rate=0.5):
|
||||
super(DecoderPrenet, self).__init__(name_scope)
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.output_size = output_size
|
||||
self.dropout_rate = dropout_rate
|
||||
|
||||
self.fc1 = FC(self.full_name(), input_size, hidden_size) #in pytorch this gian=1
|
||||
self.fc2 = FC(self.full_name(), hidden_size, output_size)
|
||||
|
||||
def forward(self, x):
|
||||
x = layers.dropout(layers.relu(self.fc1(x)), self.dropout_rate)
|
||||
x = layers.dropout(layers.relu(self.fc2(x)), self.dropout_rate)
|
||||
return x
|
||||
|
||||
class ScaledDotProductAttention(dg.Layer):
|
||||
def __init__(self, name_scope, d_key):
|
||||
super(ScaledDotProductAttention, self).__init__(name_scope)
|
||||
|
||||
self.d_key = d_key
|
||||
|
||||
# please attention this mask is diff from pytorch
|
||||
def forward(self, key, value, query, mask=None, query_mask=None):
|
||||
# Compute attention score
|
||||
attention = layers.matmul(query, key, transpose_y=True) #transpose the last dim in y
|
||||
attention = attention / math.sqrt(self.d_key)
|
||||
|
||||
# Mask key to ignore padding
|
||||
if mask is not None:
|
||||
attention = attention * mask
|
||||
mask = (mask == 0).astype(float) * (-2 ** 32 + 1)
|
||||
attention = attention + mask
|
||||
|
||||
attention = layers.softmax(attention)
|
||||
# Mask query to ignore padding
|
||||
# Not sure how to work
|
||||
if query_mask is not None:
|
||||
attention = attention * query_mask
|
||||
|
||||
result = layers.matmul(attention, value)
|
||||
return result, attention
|
||||
|
||||
class MultiheadAttention(dg.Layer):
|
||||
def __init__(self, name_scope, num_hidden, num_head=4):
|
||||
super(MultiheadAttention, self).__init__(name_scope)
|
||||
self.num_hidden = num_hidden
|
||||
self.num_hidden_per_attn = num_hidden // num_head
|
||||
self.num_head = num_head
|
||||
|
||||
self.key = FC(self.full_name(), num_hidden, num_hidden, is_bias=False)
|
||||
self.value = FC(self.full_name(), num_hidden, num_hidden, is_bias=False)
|
||||
self.query = FC(self.full_name(), num_hidden, num_hidden, is_bias=False)
|
||||
|
||||
self.scal_attn = ScaledDotProductAttention(self.full_name(), self.num_hidden_per_attn)
|
||||
|
||||
self.fc = FC(self.full_name(), num_hidden * 2, num_hidden)
|
||||
|
||||
self.layer_norm = dg.LayerNorm(self.full_name(), begin_norm_axis=2)
|
||||
|
||||
def forward(self, key, value, query_input, mask=None, query_mask=None):
|
||||
batch_size = key.shape[0]
|
||||
seq_len_key = key.shape[1]
|
||||
seq_len_query = query_input.shape[1]
|
||||
|
||||
# repeat masks h times
|
||||
if query_mask is not None:
|
||||
query_mask = layers.unsqueeze(query_mask, axes=[-1])
|
||||
query_mask = layers.expand(query_mask, [self.num_head, 1, seq_len_key])
|
||||
if mask is not None:
|
||||
mask = layers.expand(mask, (self.num_head, 1, 1))
|
||||
|
||||
# Make multihead attention
|
||||
# key & value.shape = (batch_size, seq_len, feature)(feature = num_head * num_hidden_per_attn)
|
||||
key = layers.reshape(self.key(key), [batch_size, seq_len_key, self.num_head, self.num_hidden_per_attn])
|
||||
value = layers.reshape(self.value(value), [batch_size, seq_len_key, self.num_head, self.num_hidden_per_attn])
|
||||
query = layers.reshape(self.query(query_input), [batch_size, seq_len_query, self.num_head, self.num_hidden_per_attn])
|
||||
|
||||
key = layers.reshape(layers.transpose(key, [2, 0, 1, 3]), [-1, seq_len_key, self.num_hidden_per_attn])
|
||||
value = layers.reshape(layers.transpose(value, [2, 0, 1, 3]), [-1, seq_len_key, self.num_hidden_per_attn])
|
||||
query = layers.reshape(layers.transpose(query, [2, 0, 1, 3]), [-1, seq_len_query, self.num_hidden_per_attn])
|
||||
|
||||
result, attention = self.scal_attn(key, value, query, mask=mask, query_mask=query_mask)
|
||||
|
||||
# concat all multihead result
|
||||
result = layers.reshape(result, [self.num_head, batch_size, seq_len_query, self.num_hidden_per_attn])
|
||||
result = layers.reshape(layers.transpose(result, [1,2,0,3]),[batch_size, seq_len_query, -1])
|
||||
#print(result.().shape)
|
||||
# concat result with input
|
||||
result = layers.concat([query_input, result], axis=-1)
|
||||
|
||||
result = self.fc(result)
|
||||
result = result + query_input
|
||||
|
||||
result = self.layer_norm(result)
|
||||
return result, attention
|
||||
|
||||
class PostConvNet(dg.Layer):
|
||||
def __init__(self, name_scope, config):
|
||||
super(PostConvNet, self).__init__(name_scope)
|
||||
|
||||
num_hidden = config.network.hidden_size
|
||||
self.num_hidden = num_hidden
|
||||
self.conv1 = Conv(self.full_name(),
|
||||
in_channels = config.audio.num_mels * config.audio.outputs_per_step,
|
||||
out_channels = num_hidden,
|
||||
filter_size = 5,
|
||||
padding = 4,
|
||||
use_cudnn = config.use_gpu,
|
||||
data_format = "NCT",
|
||||
gain = 5 / 3)
|
||||
self.conv_list = [Conv(self.full_name(),
|
||||
in_channels = num_hidden,
|
||||
out_channels = num_hidden,
|
||||
filter_size = 5,
|
||||
padding = 4,
|
||||
use_cudnn = config.use_gpu,
|
||||
data_format = "NCT",
|
||||
gain = 5 / 3) for _ in range(3)]
|
||||
for i, layer in enumerate(self.conv_list):
|
||||
self.add_sublayer("conv_list_{}".format(i), layer)
|
||||
self.conv5 = Conv(self.full_name(),
|
||||
in_channels = num_hidden,
|
||||
out_channels = config.audio.num_mels * config.audio.outputs_per_step,
|
||||
filter_size = 5,
|
||||
padding = 4,
|
||||
use_cudnn = config.use_gpu,
|
||||
data_format = "NCT")
|
||||
|
||||
self.batch_norm_list = [dg.BatchNorm(self.full_name(), num_hidden,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
moving_mean_name = 'moving_mean',
|
||||
moving_variance_name = 'moving_var',
|
||||
data_layout='NCHW') for _ in range(3)]
|
||||
for i, layer in enumerate(self.batch_norm_list):
|
||||
self.add_sublayer("batch_norm_list_{}".format(i), layer)
|
||||
self.batch_norm1 = dg.BatchNorm(self.full_name(), num_hidden,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
moving_mean_name = 'moving_mean',
|
||||
moving_variance_name = 'moving_var',
|
||||
data_layout='NCHW')
|
||||
|
||||
def forward(self, input):
|
||||
input = layers.dropout(layers.tanh(self.batch_norm1(self.conv1(input)[:, :, :-4])),0.1)
|
||||
for batch_norm, conv in zip(self.batch_norm_list, self.conv_list):
|
||||
input = layers.dropout(layers.tanh(batch_norm(conv(input)[:, :, :-4])),0.1)
|
||||
input = self.conv5(input)[:, :, :-4]
|
||||
return input
|
||||
|
||||
class CBHG(dg.Layer):
|
||||
def __init__(self, name_scope, config, K=16, projection_size = 256, num_gru_layers=2,
|
||||
max_pool_kernel_size=2, is_post=False):
|
||||
super(CBHG, self).__init__(name_scope)
|
||||
"""
|
||||
:param hidden_size: dimension of hidden unit
|
||||
:param K: # of convolution banks
|
||||
:param projection_size: dimension of projection unit
|
||||
:param num_gru_layers: # of layers of GRUcell
|
||||
:param max_pool_kernel_size: max pooling kernel size
|
||||
:param is_post: whether post processing or not
|
||||
"""
|
||||
hidden_size = config.network.hidden_size
|
||||
self.hidden_size = hidden_size
|
||||
self.projection_size = projection_size
|
||||
self.conv_list = []
|
||||
self.conv_list.append(Conv(self.full_name(),
|
||||
in_channels = projection_size,
|
||||
out_channels = hidden_size,
|
||||
filter_size = 1,
|
||||
padding = int(np.floor(1/2)),
|
||||
data_format = "NCT"))
|
||||
for i in range(2,K+1):
|
||||
self.conv_list.append(Conv(self.full_name(),
|
||||
in_channels = hidden_size,
|
||||
out_channels = hidden_size,
|
||||
filter_size = i,
|
||||
padding = int(np.floor(i/2)),
|
||||
data_format = "NCT"))
|
||||
|
||||
for i, layer in enumerate(self.conv_list):
|
||||
self.add_sublayer("conv_list_{}".format(i), layer)
|
||||
|
||||
self.batchnorm_list = []
|
||||
for i in range(K):
|
||||
self.batchnorm_list.append(dg.BatchNorm(self.full_name(), hidden_size,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
moving_mean_name = 'moving_mean',
|
||||
moving_variance_name = 'moving_var',
|
||||
data_layout='NCHW'))
|
||||
|
||||
for i, layer in enumerate(self.batchnorm_list):
|
||||
self.add_sublayer("batchnorm_list_{}".format(i), layer)
|
||||
|
||||
conv_outdim = hidden_size * K
|
||||
|
||||
self.conv_projection_1 = Conv(self.full_name(),
|
||||
in_channels = conv_outdim,
|
||||
out_channels = hidden_size,
|
||||
filter_size = 3,
|
||||
padding = int(np.floor(3/2)),
|
||||
data_format = "NCT")
|
||||
|
||||
self.conv_projection_2 = Conv(self.full_name(),
|
||||
in_channels = hidden_size,
|
||||
out_channels = projection_size,
|
||||
filter_size = 3,
|
||||
padding = int(np.floor(3/2)),
|
||||
data_format = "NCT")
|
||||
|
||||
self.batchnorm_proj_1 = dg.BatchNorm(self.full_name(), hidden_size,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
moving_mean_name = 'moving_mean',
|
||||
moving_variance_name = 'moving_var',
|
||||
data_layout='NCHW')
|
||||
self.batchnorm_proj_2 = dg.BatchNorm(self.full_name(), projection_size,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
moving_mean_name = 'moving_mean',
|
||||
moving_variance_name = 'moving_var',
|
||||
data_layout='NCHW')
|
||||
self.max_pool = Pool1D(self.full_name(), pool_size = max_pool_kernel_size,
|
||||
pool_type='max',
|
||||
pool_stride=1,
|
||||
pool_padding=1,
|
||||
data_format = "NCT")
|
||||
self.highway = Highwaynet(self.full_name(), self.projection_size)
|
||||
|
||||
h_0 = np.zeros((config.batch_size, hidden_size // 2), dtype="float32")
|
||||
h_0 = dg.to_variable(h_0)
|
||||
self.fc_forward1 = FC(self.full_name(), hidden_size, hidden_size // 2 * 3)
|
||||
self.fc_reverse1 = FC(self.full_name(), hidden_size, hidden_size // 2 * 3)
|
||||
self.gru_forward1 = DynamicGRU(self.full_name(),
|
||||
size = self.hidden_size // 2,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
is_reverse = False,
|
||||
origin_mode = True,
|
||||
h_0 = h_0)
|
||||
self.gru_reverse1 = DynamicGRU(self.full_name(),
|
||||
size = self.hidden_size // 2,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
is_reverse=True,
|
||||
origin_mode=True,
|
||||
h_0 = h_0)
|
||||
|
||||
self.fc_forward2 = FC(self.full_name(), hidden_size, hidden_size // 2 * 3)
|
||||
self.fc_reverse2 = FC(self.full_name(), hidden_size, hidden_size // 2 * 3)
|
||||
self.gru_forward2 = DynamicGRU(self.full_name(),
|
||||
size = self.hidden_size // 2,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
is_reverse = False,
|
||||
origin_mode = True,
|
||||
h_0 = h_0)
|
||||
self.gru_reverse2 = DynamicGRU(self.full_name(),
|
||||
size = self.hidden_size // 2,
|
||||
param_attr = fluid.ParamAttr(name='weight'),
|
||||
bias_attr = fluid.ParamAttr(name='bias'),
|
||||
is_reverse=True,
|
||||
origin_mode=True,
|
||||
h_0 = h_0)
|
||||
|
||||
def _conv_fit_dim(self, x, filter_size=3):
|
||||
if filter_size % 2 == 0:
|
||||
return x[:,:,:-1]
|
||||
else:
|
||||
return x
|
||||
|
||||
def forward(self, input_):
|
||||
# input_.shape = [N, C, T]
|
||||
|
||||
conv_list = []
|
||||
conv_input = input_
|
||||
|
||||
for i, (conv, batchnorm) in enumerate(zip(self.conv_list, self.batchnorm_list)):
|
||||
conv_input = self._conv_fit_dim(conv(conv_input), i+1)
|
||||
conv_input = layers.relu(batchnorm(conv_input))
|
||||
conv_list.append(conv_input)
|
||||
|
||||
conv_cat = layers.concat(conv_list, axis=1)
|
||||
conv_pool = self.max_pool(conv_cat)[:,:,:-1]
|
||||
|
||||
|
||||
conv_proj = layers.relu(self.batchnorm_proj_1(self._conv_fit_dim(self.conv_projection_1(conv_pool))))
|
||||
conv_proj = self.batchnorm_proj_2(self._conv_fit_dim(self.conv_projection_2(conv_proj))) + input_
|
||||
|
||||
# conv_proj.shape = [N, C, T]
|
||||
highway = layers.transpose(conv_proj, [0,2,1])
|
||||
highway = self.highway(highway)
|
||||
|
||||
# highway.shape = [N, T, C]
|
||||
fc_forward = self.fc_forward1(highway)
|
||||
fc_reverse = self.fc_reverse1(highway)
|
||||
out_forward = self.gru_forward1(fc_forward)
|
||||
out_reverse = self.gru_reverse1(fc_reverse)
|
||||
out = layers.concat([out_forward, out_reverse], axis=-1)
|
||||
fc_forward = self.fc_forward2(out)
|
||||
fc_reverse = self.fc_reverse2(out)
|
||||
out_forward = self.gru_forward2(fc_forward)
|
||||
out_reverse = self.gru_reverse2(fc_reverse)
|
||||
out = layers.concat([out_forward, out_reverse], axis=-1)
|
||||
out = layers.transpose(out, [0,2,1])
|
||||
return out
|
||||
|
||||
class Highwaynet(dg.Layer):
|
||||
def __init__(self, name_scope, num_units, num_layers=4):
|
||||
super(Highwaynet, self).__init__(name_scope)
|
||||
self.num_units = num_units
|
||||
self.num_layers = num_layers
|
||||
|
||||
self.gates = []
|
||||
self.linears = []
|
||||
|
||||
for i in range(num_layers):
|
||||
self.linears.append(FC(self.full_name(), num_units, num_units))
|
||||
self.gates.append(FC(self.full_name(), num_units, num_units))
|
||||
|
||||
for i, (linear, gate) in enumerate(zip(self.linears,self.gates)):
|
||||
self.add_sublayer("linears_{}".format(i), linear)
|
||||
self.add_sublayer("gates_{}".format(i), gate)
|
||||
|
||||
def forward(self, input_):
|
||||
out = input_
|
||||
|
||||
for linear, gate in zip(self.linears, self.gates):
|
||||
h = fluid.layers.relu(linear(out))
|
||||
t_ = fluid.layers.sigmoid(gate(out))
|
||||
|
||||
c = 1 - t_
|
||||
out = h * t_ + out * c
|
||||
|
||||
return out
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,207 @@
|
|||
from module import *
|
||||
from utils import get_positional_table, get_sinusoid_encoding_table
|
||||
import paddle.fluid.dygraph as dg
|
||||
import paddle.fluid as fluid
|
||||
|
||||
class Encoder(dg.Layer):
|
||||
def __init__(self, name_scope, embedding_size, num_hidden, config):
|
||||
super(Encoder, self).__init__(name_scope)
|
||||
self.num_hidden = num_hidden
|
||||
param = fluid.ParamAttr(name='alpha')
|
||||
self.alpha = self.create_parameter(param, shape=(1, ), dtype='float32',
|
||||
default_initializer = fluid.initializer.ConstantInitializer(value=1.0))
|
||||
self.pos_inp = get_sinusoid_encoding_table(1024, self.num_hidden, padding_idx=0)
|
||||
self.pos_emb = dg.Embedding(name_scope=self.full_name(),
|
||||
size=[1024, num_hidden],
|
||||
padding_idx=0,
|
||||
param_attr=fluid.ParamAttr(
|
||||
name='weight',
|
||||
initializer=fluid.initializer.NumpyArrayInitializer(self.pos_inp),
|
||||
trainable=False))
|
||||
self.encoder_prenet = EncoderPrenet(name_scope = self.full_name(),
|
||||
embedding_size = embedding_size,
|
||||
num_hidden = num_hidden,
|
||||
use_cudnn=config.use_gpu)
|
||||
self.layers = [MultiheadAttention(self.full_name(), num_hidden) for _ in range(3)]
|
||||
for i, layer in enumerate(self.layers):
|
||||
self.add_sublayer("self_attn_{}".format(i), layer)
|
||||
self.ffns = [FFN(self.full_name(), num_hidden, use_cudnn = config.use_gpu) for _ in range(3)]
|
||||
for i, layer in enumerate(self.ffns):
|
||||
self.add_sublayer("ffns_{}".format(i), layer)
|
||||
|
||||
def forward(self, x, positional):
|
||||
if fluid.framework._dygraph_tracer()._train_mode:
|
||||
query_mask = (positional != 0).astype(float)
|
||||
mask = (positional != 0).astype(float)
|
||||
mask = fluid.layers.expand(fluid.layers.unsqueeze(mask,[1]), [1,x.shape[1], 1])
|
||||
else:
|
||||
query_mask, mask = None, None
|
||||
|
||||
# Encoder pre_network
|
||||
x = self.encoder_prenet(x) #(N,T,C)
|
||||
|
||||
|
||||
# Get positional encoding
|
||||
positional = self.pos_emb(fluid.layers.unsqueeze(positional, axes=[-1]))
|
||||
x = positional * self.alpha + x #(N, T, C)
|
||||
|
||||
|
||||
# Positional dropout
|
||||
x = layers.dropout(x, 0.1)
|
||||
|
||||
# Self attention encoder
|
||||
attentions = list()
|
||||
for layer, ffn in zip(self.layers, self.ffns):
|
||||
x, attention = layer(x, x, x, mask = mask, query_mask = query_mask)
|
||||
x = ffn(x)
|
||||
attentions.append(attention)
|
||||
|
||||
return x, query_mask, attentions
|
||||
|
||||
class Decoder(dg.Layer):
|
||||
def __init__(self, name_scope, num_hidden, config):
|
||||
super(Decoder, self).__init__(name_scope)
|
||||
self.num_hidden = num_hidden
|
||||
param = fluid.ParamAttr(name='alpha')
|
||||
self.alpha = self.create_parameter(param, shape=(1,), dtype='float32',
|
||||
default_initializer = fluid.initializer.ConstantInitializer(value=1.0))
|
||||
self.pos_inp = get_sinusoid_encoding_table(1024, self.num_hidden, padding_idx=0)
|
||||
self.pos_emb = dg.Embedding(name_scope=self.full_name(),
|
||||
size=[1024, num_hidden],
|
||||
padding_idx=0,
|
||||
param_attr=fluid.ParamAttr(
|
||||
name='weight',
|
||||
initializer=fluid.initializer.NumpyArrayInitializer(self.pos_inp),
|
||||
trainable=False))
|
||||
self.decoder_prenet = DecoderPrenet(self.full_name(),
|
||||
input_size = config.audio.num_mels,
|
||||
hidden_size = num_hidden * 2,
|
||||
output_size = num_hidden,
|
||||
dropout_rate=0.2)
|
||||
self.linear = FC(self.full_name(), num_hidden, num_hidden)
|
||||
|
||||
self.selfattn_layers = [MultiheadAttention(self.full_name(), num_hidden) for _ in range(3)]
|
||||
for i, layer in enumerate(self.selfattn_layers):
|
||||
self.add_sublayer("self_attn_{}".format(i), layer)
|
||||
self.attn_layers = [MultiheadAttention(self.full_name(), num_hidden) for _ in range(3)]
|
||||
for i, layer in enumerate(self.attn_layers):
|
||||
self.add_sublayer("attn_{}".format(i), layer)
|
||||
self.ffns = [FFN(self.full_name(), num_hidden) for _ in range(3)]
|
||||
for i, layer in enumerate(self.ffns):
|
||||
self.add_sublayer("ffns_{}".format(i), layer)
|
||||
self.mel_linear = FC(self.full_name(), num_hidden, config.audio.num_mels * config.audio.outputs_per_step)
|
||||
self.stop_linear = FC(self.full_name(), num_hidden, 1, gain = 1)
|
||||
|
||||
self.postconvnet = PostConvNet(self.full_name(), config)
|
||||
|
||||
def forward(self, key, value, query, c_mask, positional):
|
||||
batch_size = key.shape[0]
|
||||
decoder_len = query.shape[1]
|
||||
|
||||
# get decoder mask with triangular matrix
|
||||
|
||||
if fluid.framework._dygraph_tracer()._train_mode:
|
||||
#zeros = np.zeros(positional.shape, dtype=np.float32)
|
||||
m_mask = (positional != 0).astype(float)
|
||||
mask = np.repeat(np.expand_dims(m_mask.numpy() == 0, axis=1), decoder_len, axis=1)
|
||||
mask = mask + np.repeat(np.expand_dims(np.triu(np.ones([decoder_len, decoder_len]), 1), axis=0) ,batch_size, axis=0)
|
||||
mask = fluid.layers.cast(dg.to_variable(mask == 0), np.float32)
|
||||
|
||||
|
||||
# (batch_size, decoder_len, decoder_len)
|
||||
zero_mask = fluid.layers.expand(fluid.layers.unsqueeze((c_mask != 0).astype(float), axes=2), [1,1,decoder_len])
|
||||
# (batch_size, decoder_len, seq_len)
|
||||
zero_mask = fluid.layers.transpose(zero_mask, [0,2,1])
|
||||
|
||||
else:
|
||||
mask = np.repeat(np.expand_dims(np.triu(np.ones([decoder_len, decoder_len]), 1), axis=0) ,batch_size, axis=0)
|
||||
mask = fluid.layers.cast(dg.to_variable(mask == 0), np.float32)
|
||||
m_mask, zero_mask = None, None
|
||||
#import pdb; pdb.set_trace()
|
||||
# Decoder pre-network
|
||||
query = self.decoder_prenet(query)
|
||||
|
||||
# Centered position
|
||||
query = self.linear(query)
|
||||
|
||||
# Get position embedding
|
||||
positional = self.pos_emb(fluid.layers.unsqueeze(positional, axes=[-1]))
|
||||
query = positional * self.alpha + query
|
||||
|
||||
#positional dropout
|
||||
query = fluid.layers.dropout(query, 0.1)
|
||||
|
||||
# Attention decoder-decoder, encoder-decoder
|
||||
selfattn_list = list()
|
||||
attn_list = list()
|
||||
|
||||
for selfattn, attn, ffn in zip(self.selfattn_layers, self.attn_layers, self.ffns):
|
||||
query, attn_dec = selfattn(query, query, query, mask = mask, query_mask = m_mask)
|
||||
query, attn_dot = attn(key, value, query, mask = zero_mask, query_mask = m_mask)
|
||||
query = ffn(query)
|
||||
selfattn_list.append(attn_dec)
|
||||
attn_list.append(attn_dot)
|
||||
|
||||
# Mel linear projection
|
||||
mel_out = self.mel_linear(query)
|
||||
# Post Mel Network
|
||||
postnet_input = layers.transpose(mel_out, [0,2,1])
|
||||
out = self.postconvnet(postnet_input)
|
||||
out = postnet_input + out
|
||||
out = layers.transpose(out, [0,2,1])
|
||||
|
||||
# Stop tokens
|
||||
stop_tokens = self.stop_linear(query)
|
||||
|
||||
return mel_out, out, attn_list, stop_tokens, selfattn_list
|
||||
|
||||
class Model(dg.Layer):
|
||||
def __init__(self, name_scope, config):
|
||||
super(Model, self).__init__(name_scope)
|
||||
self.encoder = Encoder(self.full_name(), config.network.embedding_size, config.network.hidden_size, config)
|
||||
self.decoder = Decoder(self.full_name(), config.network.hidden_size, config)
|
||||
self.config = config
|
||||
|
||||
def forward(self, characters, mel_input, pos_text, pos_mel):
|
||||
# key (batch_size, seq_len, channel)
|
||||
# c_mask (batch_size, seq_len)
|
||||
# attns_enc (channel / 2, seq_len, seq_len)
|
||||
key, c_mask, attns_enc = self.encoder(characters, pos_text)
|
||||
|
||||
# mel_output/postnet_output (batch_size, mel_len, n_mel)
|
||||
# attn_probs (128, mel_len, seq_len)
|
||||
# stop_preds (batch_size, mel_len, 1)
|
||||
# attns_dec (128, mel_len, mel_len)
|
||||
mel_output, postnet_output, attn_probs, stop_preds, attns_dec = self.decoder(key, key, mel_input, c_mask, pos_mel)
|
||||
|
||||
return mel_output, postnet_output, attn_probs, stop_preds, attns_enc, attns_dec
|
||||
|
||||
class ModelPostNet(dg.Layer):
|
||||
"""
|
||||
CBHG Network (mel -> linear)
|
||||
"""
|
||||
def __init__(self, name_scope, config):
|
||||
super(ModelPostNet, self).__init__(name_scope)
|
||||
self.pre_proj = Conv(self.full_name(),
|
||||
in_channels = config.audio.num_mels,
|
||||
out_channels = config.network.hidden_size,
|
||||
data_format = "NCT")
|
||||
self.cbhg = CBHG(self.full_name(), config)
|
||||
self.post_proj = Conv(self.full_name(),
|
||||
in_channels = config.audio.num_mels,
|
||||
out_channels = (config.audio.n_fft // 2) + 1,
|
||||
data_format = "NCT")
|
||||
|
||||
def forward(self, mel):
|
||||
mel = layers.transpose(mel, [0,2,1])
|
||||
mel = self.pre_proj(mel)
|
||||
mel = self.cbhg(mel)
|
||||
mag_pred = self.post_proj(mel)
|
||||
mag_pred = layers.transpose(mag_pred, [0,2,1])
|
||||
return mag_pred
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,63 @@
|
|||
import jsonargparse
|
||||
|
||||
def add_config_options_to_parser(parser):
|
||||
parser.add_argument('--audio.num_mels', type=int, default=80,
|
||||
help="the number of mel bands when calculating mel spectrograms.")
|
||||
parser.add_argument('--audio.n_fft', type=int, default=2048,
|
||||
help="the number of fft components.")
|
||||
parser.add_argument('--audio.sr', type=int, default=22050,
|
||||
help="the sampling rate of audio data file.")
|
||||
parser.add_argument('--audio.preemphasis', type=float, default=0.97,
|
||||
help="the preemphasis coefficient.")
|
||||
parser.add_argument('--audio.hop_length', type=float, default=128,
|
||||
help="the number of samples to advance between frames.")
|
||||
parser.add_argument('--audio.win_length', type=float, default=1024,
|
||||
help="the length (width) of the window function.")
|
||||
parser.add_argument('--audio.power', type=float, default=1.4,
|
||||
help="the power to raise before griffin-lim.")
|
||||
parser.add_argument('--audio.min_level_db', type=int, default=-100,
|
||||
help="the minimum level db.")
|
||||
parser.add_argument('--audio.ref_level_db', type=int, default=20,
|
||||
help="the reference level db.")
|
||||
parser.add_argument('--audio.outputs_per_step', type=int, default=1,
|
||||
help="the outputs per step.")
|
||||
|
||||
parser.add_argument('--network.hidden_size', type=int, default=256,
|
||||
help="the hidden size in network.")
|
||||
parser.add_argument('--network.embedding_size', type=int, default=512,
|
||||
help="the embedding vector size.")
|
||||
|
||||
parser.add_argument('--batch_size', type=int, default=32,
|
||||
help="batch size for training.")
|
||||
parser.add_argument('--epochs', type=int, default=10000,
|
||||
help="the number of epoch for training.")
|
||||
parser.add_argument('--lr', type=float, default=0.001,
|
||||
help="the learning rate for training.")
|
||||
parser.add_argument('--save_step', type=int, default=500,
|
||||
help="checkpointing interval during training.")
|
||||
parser.add_argument('--image_step', type=int, default=2000,
|
||||
help="attention image interval during training.")
|
||||
parser.add_argument('--max_len', type=int, default=400,
|
||||
help="The max length of audio when synthsis.")
|
||||
parser.add_argument('--transformer_step', type=int, default=160000,
|
||||
help="Global step to restore checkpoint of transformer in synthesis.")
|
||||
parser.add_argument('--postnet_step', type=int, default=100000,
|
||||
help="Global step to restore checkpoint of postnet in synthesis.")
|
||||
parser.add_argument('--use_gpu', type=bool, default=True,
|
||||
help="use gpu or not during training.")
|
||||
parser.add_argument('--use_data_parallel', type=bool, default=False,
|
||||
help="use data parallel or not during training.")
|
||||
|
||||
parser.add_argument('--data_path', type=str, default='./dataset/LJSpeech-1.1',
|
||||
help="the path of dataset.")
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None,
|
||||
help="the path to load checkpoint or pretrain model.")
|
||||
parser.add_argument('--save_path', type=str, default='./checkpoint',
|
||||
help="the path to save checkpoint.")
|
||||
parser.add_argument('--log_dir', type=str, default='./log',
|
||||
help="the directory to save tensorboard log.")
|
||||
parser.add_argument('--sample_path', type=str, default='./log',
|
||||
help="the directory to save audio sample in synthesis.")
|
||||
|
||||
|
||||
parser.add_argument('-c', '--config', action=jsonargparse.ActionConfigFile)
|
|
@ -0,0 +1,137 @@
|
|||
from pathlib import Path
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import librosa
|
||||
|
||||
from parakeet import g2p
|
||||
from parakeet import audio
|
||||
|
||||
from parakeet.data.sampler import SequentialSampler, RandomSampler, BatchSampler
|
||||
from parakeet.data.dataset import Dataset
|
||||
from parakeet.data.datacargo import DataCargo
|
||||
from parakeet.data.batch import TextIDBatcher, SpecBatcher
|
||||
|
||||
_ljspeech_processor = audio.AudioProcessor(
|
||||
sample_rate=22050,
|
||||
num_mels=80,
|
||||
min_level_db=-100,
|
||||
ref_level_db=20,
|
||||
n_fft=2048,
|
||||
win_length= int(22050 * 0.05),
|
||||
hop_length= int(22050 * 0.0125),
|
||||
power=1.2,
|
||||
preemphasis=0.97,
|
||||
signal_norm=True,
|
||||
symmetric_norm=False,
|
||||
max_norm=1.,
|
||||
mel_fmin=0,
|
||||
mel_fmax=None,
|
||||
clip_norm=True,
|
||||
griffin_lim_iters=60,
|
||||
do_trim_silence=False,
|
||||
sound_norm=False)
|
||||
|
||||
class LJSpeech(Dataset):
|
||||
def __init__(self, root):
|
||||
super(LJSpeech, self).__init__()
|
||||
assert isinstance(root, (str, Path)), "root should be a string or Path object"
|
||||
self.root = root if isinstance(root, Path) else Path(root)
|
||||
self.metadata = self._prepare_metadata()
|
||||
|
||||
def _prepare_metadata(self):
|
||||
csv_path = self.root.joinpath("metadata.csv")
|
||||
metadata = pd.read_csv(csv_path, sep="|", header=None, quoting=3,
|
||||
names=["fname", "raw_text", "normalized_text"])
|
||||
return metadata
|
||||
|
||||
def _get_example(self, metadatum):
|
||||
"""All the code for generating an Example from a metadatum. If you want a
|
||||
different preprocessing pipeline, you can override this method.
|
||||
This method may require several processor, each of which has a lot of options.
|
||||
In this case, you'd better pass a composed transform and pass it to the init
|
||||
method.
|
||||
"""
|
||||
|
||||
fname, raw_text, normalized_text = metadatum
|
||||
wav_path = self.root.joinpath("wavs", fname + ".wav")
|
||||
|
||||
# load -> trim -> preemphasis -> stft -> magnitude -> mel_scale -> logscale -> normalize
|
||||
wav = _ljspeech_processor.load_wav(str(wav_path))
|
||||
mag = _ljspeech_processor.spectrogram(wav).astype(np.float32)
|
||||
mel = _ljspeech_processor.melspectrogram(wav).astype(np.float32)
|
||||
phonemes = np.array(g2p.en.text_to_sequence(normalized_text), dtype=np.int64)
|
||||
return (mag, mel, phonemes) # maybe we need to implement it as a map in the future
|
||||
|
||||
def _batch_examples(self, minibatch):
|
||||
mag_batch = []
|
||||
mel_batch = []
|
||||
phoneme_batch = []
|
||||
for example in minibatch:
|
||||
mag, mel, phoneme = example
|
||||
mag_batch.append(mag)
|
||||
mel_batch.append(mel)
|
||||
phoneme_batch.append(phoneme)
|
||||
mag_batch = SpecBatcher(pad_value=0.)(mag_batch)
|
||||
mel_batch = SpecBatcher(pad_value=0.)(mel_batch)
|
||||
phoneme_batch = TextIDBatcher(pad_id=0)(phoneme_batch)
|
||||
return (mag_batch, mel_batch, phoneme_batch)
|
||||
|
||||
def __getitem__(self, index):
|
||||
metadatum = self.metadata.iloc[index]
|
||||
example = self._get_example(metadatum)
|
||||
return example
|
||||
|
||||
def __iter__(self):
|
||||
for i in range(len(self)):
|
||||
yield self[i]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.metadata)
|
||||
|
||||
|
||||
def batch_examples(batch):
|
||||
texts = []
|
||||
mels = []
|
||||
mel_inputs = []
|
||||
text_lens = []
|
||||
pos_texts = []
|
||||
pos_mels = []
|
||||
for data in batch:
|
||||
_, mel, text = data
|
||||
mel_inputs.append(np.concatenate([np.zeros([mel.shape[0], 1], np.float32), mel[:,:-1]], axis=-1))
|
||||
text_lens.append(len(text))
|
||||
pos_texts.append(np.arange(1, len(text) + 1))
|
||||
pos_mels.append(np.arange(1, mel.shape[1] + 1))
|
||||
mels.append(mel)
|
||||
texts.append(text)
|
||||
|
||||
# Sort by text_len in descending order
|
||||
texts = [i for i,_ in sorted(zip(texts, text_lens), key=lambda x: x[1], reverse=True)]
|
||||
mels = [i for i,_ in sorted(zip(mels, text_lens), key=lambda x: x[1], reverse=True)]
|
||||
mel_inputs = [i for i,_ in sorted(zip(mel_inputs, text_lens), key=lambda x: x[1], reverse=True)]
|
||||
pos_texts = [i for i,_ in sorted(zip(pos_texts, text_lens), key=lambda x: x[1], reverse=True)]
|
||||
pos_mels = [i for i,_ in sorted(zip(pos_mels, text_lens), key=lambda x: x[1], reverse=True)]
|
||||
text_lens = sorted(text_lens, reverse=True)
|
||||
|
||||
# Pad sequence with largest len of the batch
|
||||
texts = TextIDBatcher(pad_id=0)(texts)
|
||||
pos_texts = TextIDBatcher(pad_id=0)(pos_texts)
|
||||
pos_mels = TextIDBatcher(pad_id=0)(pos_mels)
|
||||
mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1))
|
||||
mel_inputs = np.transpose(SpecBatcher(pad_value=0.)(mel_inputs), axes=(0,2,1))
|
||||
return (texts, mels, mel_inputs, pos_texts, pos_mels, np.array(text_lens))
|
||||
|
||||
def batch_examples_postnet(batch):
|
||||
mels=[]
|
||||
mags=[]
|
||||
for data in batch:
|
||||
mag, mel, _ = data
|
||||
mels.append(mel)
|
||||
mags.append(mag)
|
||||
|
||||
mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1))
|
||||
mags = np.transpose(SpecBatcher(pad_value=0.)(mags), axes=(0,2,1))
|
||||
|
||||
return (mels, mags)
|
||||
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
import os
|
||||
from scipy.io.wavfile import write
|
||||
from parakeet.g2p.en import text_to_sequence
|
||||
import numpy as np
|
||||
from network import Model, ModelPostNet
|
||||
from tqdm import tqdm
|
||||
from tensorboardX import SummaryWriter
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.dygraph as dg
|
||||
from preprocess import _ljspeech_processor
|
||||
from pathlib import Path
|
||||
import jsonargparse
|
||||
from parse import add_config_options_to_parser
|
||||
from pprint import pprint
|
||||
|
||||
def load_checkpoint(step, model_path):
|
||||
model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
|
||||
return model_dict
|
||||
|
||||
def synthesis(text_input, cfg):
|
||||
place = (fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace())
|
||||
|
||||
# tensorboard
|
||||
if not os.path.exists(cfg.log_dir):
|
||||
os.mkdir(cfg.log_dir)
|
||||
path = os.path.join(cfg.log_dir,'synthesis')
|
||||
|
||||
writer = SummaryWriter(path)
|
||||
|
||||
with dg.guard(place):
|
||||
model = Model('transtts', cfg)
|
||||
model_postnet = ModelPostNet('postnet', cfg)
|
||||
|
||||
model.set_dict(load_checkpoint(str(cfg.transformer_step), os.path.join(cfg.checkpoint_path, "transformer")))
|
||||
model_postnet.set_dict(load_checkpoint(str(cfg.postnet_step), os.path.join(cfg.checkpoint_path, "postnet")))
|
||||
|
||||
# init input
|
||||
text = np.asarray(text_to_sequence(text_input))
|
||||
text = fluid.layers.unsqueeze(dg.to_variable(text),[0])
|
||||
mel_input = dg.to_variable(np.zeros([1,1,80])).astype(np.float32)
|
||||
pos_text = np.arange(1, text.shape[1]+1)
|
||||
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text),[0])
|
||||
|
||||
|
||||
model.eval()
|
||||
model_postnet.eval()
|
||||
|
||||
pbar = tqdm(range(cfg.max_len))
|
||||
|
||||
for i in pbar:
|
||||
pos_mel = np.arange(1, mel_input.shape[1]+1)
|
||||
pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel),[0])
|
||||
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(text, mel_input, pos_text, pos_mel)
|
||||
mel_input = fluid.layers.concat([mel_input, postnet_pred[:,-1:,:]], axis=1)
|
||||
mag_pred = model_postnet(postnet_pred)
|
||||
|
||||
wav = _ljspeech_processor.inv_spectrogram(fluid.layers.transpose(fluid.layers.squeeze(mag_pred,[0]), [1,0]).numpy())
|
||||
writer.add_audio(text_input, wav, 0, cfg.audio.sr)
|
||||
if not os.path.exists(cfg.sample_path):
|
||||
os.mkdir(cfg.sample_path)
|
||||
write(os.path.join(cfg.sample_path,'test.wav'), cfg.audio.sr, wav)
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = jsonargparse.ArgumentParser(description="Synthesis model", formatter_class='default_argparse')
|
||||
add_config_options_to_parser(parser)
|
||||
cfg = parser.parse_args('-c ./config/synthesis.yaml'.split())
|
||||
synthesis("Transformer model is so fast!", cfg)
|
|
@ -0,0 +1,135 @@
|
|||
from network import *
|
||||
from preprocess import batch_examples_postnet, LJSpeech
|
||||
from tensorboardX import SummaryWriter
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from parakeet.data.datacargo import DataCargo
|
||||
from pathlib import Path
|
||||
import jsonargparse
|
||||
from parse import add_config_options_to_parser
|
||||
from pprint import pprint
|
||||
|
||||
class MyDataParallel(dg.parallel.DataParallel):
|
||||
"""
|
||||
A data parallel proxy for model.
|
||||
"""
|
||||
|
||||
def __init__(self, layers, strategy):
|
||||
super(MyDataParallel, self).__init__(layers, strategy)
|
||||
|
||||
def __getattr__(self, key):
|
||||
if key in self.__dict__:
|
||||
return object.__getattribute__(self, key)
|
||||
elif key is "_layers":
|
||||
return object.__getattribute__(self, "_sub_layers")["_layers"]
|
||||
else:
|
||||
return getattr(
|
||||
object.__getattribute__(self, "_sub_layers")["_layers"], key)
|
||||
|
||||
|
||||
def main():
|
||||
parser = jsonargparse.ArgumentParser(description="Train postnet model", formatter_class='default_argparse')
|
||||
add_config_options_to_parser(parser)
|
||||
cfg = parser.parse_args('-c ./config/train_postnet.yaml'.split())
|
||||
|
||||
local_rank = dg.parallel.Env().local_rank
|
||||
|
||||
if local_rank == 0:
|
||||
# Print the whole config setting.
|
||||
pprint(jsonargparse.namespace_to_dict(cfg))
|
||||
|
||||
LJSPEECH_ROOT = Path(cfg.data_path)
|
||||
dataset = LJSpeech(LJSPEECH_ROOT)
|
||||
dataloader = DataCargo(dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=batch_examples_postnet, drop_last=True)
|
||||
|
||||
global_step = 0
|
||||
place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
|
||||
if cfg.use_data_parallel else fluid.CUDAPlace(0)
|
||||
if cfg.use_gpu else fluid.CPUPlace())
|
||||
|
||||
if not os.path.exists(cfg.log_dir):
|
||||
os.mkdir(cfg.log_dir)
|
||||
path = os.path.join(cfg.log_dir,'postnet')
|
||||
writer = SummaryWriter(path)
|
||||
|
||||
with dg.guard(place):
|
||||
# dataloader
|
||||
input_fields = {
|
||||
'names': ['mel', 'mag'],
|
||||
'shapes':
|
||||
[[cfg.batch_size, None, 80], [cfg.batch_size, None, 257]],
|
||||
'dtypes': ['float32', 'float32'],
|
||||
'lod_levels': [0, 0]
|
||||
}
|
||||
|
||||
inputs = [
|
||||
fluid.data(
|
||||
name=input_fields['names'][i],
|
||||
shape=input_fields['shapes'][i],
|
||||
dtype=input_fields['dtypes'][i],
|
||||
lod_level=input_fields['lod_levels'][i])
|
||||
for i in range(len(input_fields['names']))
|
||||
]
|
||||
|
||||
reader = fluid.io.DataLoader.from_generator(
|
||||
feed_list=inputs,
|
||||
capacity=32,
|
||||
iterable=True,
|
||||
use_double_buffer=True,
|
||||
return_list=True)
|
||||
|
||||
|
||||
model = ModelPostNet('postnet', cfg)
|
||||
|
||||
model.train()
|
||||
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(4000 *( cfg.lr ** 2)), 4000))
|
||||
|
||||
if cfg.checkpoint_path is not None:
|
||||
model_dict, opti_dict = fluid.dygraph.load_dygraph(cfg.checkpoint_path)
|
||||
model.set_dict(model_dict)
|
||||
optimizer.set_dict(opti_dict)
|
||||
print("load checkpoint!!!")
|
||||
|
||||
if cfg.use_data_parallel:
|
||||
strategy = dg.parallel.prepare_context()
|
||||
model = MyDataParallel(model, strategy)
|
||||
|
||||
for epoch in range(cfg.epochs):
|
||||
reader.set_batch_generator(dataloader, place)
|
||||
pbar = tqdm(reader())
|
||||
for i, data in enumerate(pbar):
|
||||
pbar.set_description('Processing at epoch %d'%epoch)
|
||||
mel, mag = data
|
||||
mag = dg.to_variable(mag.numpy())
|
||||
mel = dg.to_variable(mel.numpy())
|
||||
global_step += 1
|
||||
|
||||
mag_pred = model(mel)
|
||||
|
||||
loss = layers.mean(layers.abs(layers.elementwise_sub(mag_pred, mag)))
|
||||
if cfg.use_data_parallel:
|
||||
loss = model.scale_loss(loss)
|
||||
|
||||
writer.add_scalars('training_loss',{
|
||||
'loss':loss.numpy(),
|
||||
}, global_step)
|
||||
|
||||
loss.backward()
|
||||
if cfg.use_data_parallel:
|
||||
model.apply_collective_grads()
|
||||
optimizer.minimize(loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(1))
|
||||
model.clear_gradients()
|
||||
|
||||
if global_step % cfg.save_step == 0:
|
||||
if not os.path.exists(cfg.save_path):
|
||||
os.mkdir(cfg.save_path)
|
||||
save_path = os.path.join(cfg.save_path,'postnet/%d' % global_step)
|
||||
dg.save_dygraph(model.state_dict(), save_path)
|
||||
dg.save_dygraph(optimizer.state_dict(), save_path)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -0,0 +1,166 @@
|
|||
from preprocess import batch_examples, LJSpeech
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import paddle.fluid.dygraph as dg
|
||||
import paddle.fluid.layers as layers
|
||||
from network import *
|
||||
from tensorboardX import SummaryWriter
|
||||
from parakeet.data.datacargo import DataCargo
|
||||
from pathlib import Path
|
||||
import jsonargparse
|
||||
from parse import add_config_options_to_parser
|
||||
from pprint import pprint
|
||||
from matplotlib import cm
|
||||
|
||||
class MyDataParallel(dg.parallel.DataParallel):
|
||||
"""
|
||||
A data parallel proxy for model.
|
||||
"""
|
||||
|
||||
def __init__(self, layers, strategy):
|
||||
super(MyDataParallel, self).__init__(layers, strategy)
|
||||
|
||||
def __getattr__(self, key):
|
||||
if key in self.__dict__:
|
||||
return object.__getattribute__(self, key)
|
||||
elif key is "_layers":
|
||||
return object.__getattribute__(self, "_sub_layers")["_layers"]
|
||||
else:
|
||||
return getattr(
|
||||
object.__getattribute__(self, "_sub_layers")["_layers"], key)
|
||||
|
||||
|
||||
def main():
|
||||
parser = jsonargparse.ArgumentParser(description="Train TransformerTTS model", formatter_class='default_argparse')
|
||||
add_config_options_to_parser(parser)
|
||||
cfg = parser.parse_args('-c ./config/train_transformer.yaml'.split())
|
||||
|
||||
local_rank = dg.parallel.Env().local_rank
|
||||
|
||||
if local_rank == 0:
|
||||
# Print the whole config setting.
|
||||
pprint(jsonargparse.namespace_to_dict(cfg))
|
||||
|
||||
|
||||
LJSPEECH_ROOT = Path(cfg.data_path)
|
||||
dataset = LJSpeech(LJSPEECH_ROOT)
|
||||
dataloader = DataCargo(dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=batch_examples, drop_last=True)
|
||||
global_step = 0
|
||||
place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
|
||||
if cfg.use_data_parallel else fluid.CUDAPlace(0)
|
||||
if cfg.use_gpu else fluid.CPUPlace())
|
||||
|
||||
if not os.path.exists(cfg.log_dir):
|
||||
os.mkdir(cfg.log_dir)
|
||||
path = os.path.join(cfg.log_dir,'transformer')
|
||||
|
||||
writer = SummaryWriter(path) if local_rank == 0 else None
|
||||
|
||||
with dg.guard(place):
|
||||
if cfg.use_data_parallel:
|
||||
strategy = dg.parallel.prepare_context()
|
||||
|
||||
# dataloader
|
||||
input_fields = {
|
||||
'names': ['character', 'mel', 'mel_input', 'pos_text', 'pos_mel', 'text_len'],
|
||||
'shapes':
|
||||
[[cfg.batch_size, None], [cfg.batch_size, None, 80], [cfg.batch_size, None, 80], [cfg.batch_size, 1], [cfg.batch_size, 1], [cfg.batch_size, 1]],
|
||||
'dtypes': ['float32', 'float32', 'float32', 'int64', 'int64', 'int64'],
|
||||
'lod_levels': [0, 0, 0, 0, 0, 0]
|
||||
}
|
||||
|
||||
inputs = [
|
||||
fluid.data(
|
||||
name=input_fields['names'][i],
|
||||
shape=input_fields['shapes'][i],
|
||||
dtype=input_fields['dtypes'][i],
|
||||
lod_level=input_fields['lod_levels'][i])
|
||||
for i in range(len(input_fields['names']))
|
||||
]
|
||||
|
||||
reader = fluid.io.DataLoader.from_generator(
|
||||
feed_list=inputs,
|
||||
capacity=32,
|
||||
iterable=True,
|
||||
use_double_buffer=True,
|
||||
return_list=True)
|
||||
|
||||
model = Model('transtts', cfg)
|
||||
|
||||
model.train()
|
||||
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(4000 *( cfg.lr ** 2)), 4000))
|
||||
|
||||
if cfg.checkpoint_path is not None:
|
||||
model_dict, opti_dict = fluid.dygraph.load_dygraph(cfg.checkpoint_path)
|
||||
model.set_dict(model_dict)
|
||||
optimizer.set_dict(opti_dict)
|
||||
print("load checkpoint!!!")
|
||||
|
||||
if cfg.use_data_parallel:
|
||||
model = MyDataParallel(model, strategy)
|
||||
|
||||
for epoch in range(cfg.epochs):
|
||||
reader.set_batch_generator(dataloader, place)
|
||||
pbar = tqdm(reader())
|
||||
for i, data in enumerate(pbar):
|
||||
pbar.set_description('Processing at epoch %d'%epoch)
|
||||
character, mel, mel_input, pos_text, pos_mel, text_length = data
|
||||
|
||||
global_step += 1
|
||||
|
||||
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(character, mel_input, pos_text, pos_mel)
|
||||
|
||||
mel_loss = layers.mean(layers.abs(layers.elementwise_sub(mel_pred, mel)))
|
||||
post_mel_loss = layers.mean(layers.abs(layers.elementwise_sub(postnet_pred, mel)))
|
||||
loss = mel_loss + post_mel_loss
|
||||
|
||||
if cfg.use_data_parallel:
|
||||
loss = model.scale_loss(loss)
|
||||
|
||||
writer.add_scalars('training_loss', {
|
||||
'mel_loss':mel_loss.numpy(),
|
||||
'post_mel_loss':post_mel_loss.numpy(),
|
||||
}, global_step)
|
||||
|
||||
writer.add_scalars('alphas', {
|
||||
'encoder_alpha':model.encoder.alpha.numpy(),
|
||||
'decoder_alpha':model.decoder.alpha.numpy(),
|
||||
}, global_step)
|
||||
|
||||
writer.add_scalar('learning_rate', optimizer._learning_rate.step().numpy(), global_step)
|
||||
|
||||
if global_step % cfg.image_step == 1:
|
||||
for i, prob in enumerate(attn_probs):
|
||||
for j in range(4):
|
||||
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
||||
writer.add_image('Attention_enc_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
||||
|
||||
for i, prob in enumerate(attn_enc):
|
||||
for j in range(4):
|
||||
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
||||
writer.add_image('Attention_enc_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
||||
|
||||
for i, prob in enumerate(attn_dec):
|
||||
for j in range(4):
|
||||
x = np.uint8(cm.viridis(prob.numpy()[j*16]) * 255)
|
||||
writer.add_image('Attention_dec_%d_0'%global_step, x, i*4+j, dataformats="HWC")
|
||||
|
||||
loss.backward()
|
||||
if cfg.use_data_parallel:
|
||||
model.apply_collective_grads()
|
||||
optimizer.minimize(loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(1))
|
||||
model.clear_gradients()
|
||||
|
||||
# save checkpoint
|
||||
if local_rank==0 and global_step % cfg.save_step == 0:
|
||||
if not os.path.exists(cfg.save_path):
|
||||
os.mkdir(cfg.save_path)
|
||||
save_path = os.path.join(cfg.save_path,'transformer/%d' % global_step)
|
||||
dg.save_dygraph(model.state_dict(), save_path)
|
||||
dg.save_dygraph(optimizer.state_dict(), save_path)
|
||||
if local_rank==0:
|
||||
writer.close()
|
||||
|
||||
|
||||
if __name__ =='__main__':
|
||||
main()
|
|
@ -0,0 +1,42 @@
|
|||
import numpy as np
|
||||
import librosa
|
||||
import os, copy
|
||||
from scipy import signal
|
||||
|
||||
|
||||
def get_positional_table(d_pos_vec, n_position=1024):
|
||||
position_enc = np.array([
|
||||
[pos / np.power(10000, 2*i/d_pos_vec) for i in range(d_pos_vec)]
|
||||
if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
|
||||
|
||||
position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i
|
||||
position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1
|
||||
return position_enc
|
||||
|
||||
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
|
||||
''' Sinusoid position encoding table '''
|
||||
|
||||
def cal_angle(position, hid_idx):
|
||||
return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)
|
||||
|
||||
def get_posi_angle_vec(position):
|
||||
return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
|
||||
|
||||
sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
|
||||
|
||||
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
||||
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
||||
|
||||
if padding_idx is not None:
|
||||
# zero vector for padding dimension
|
||||
sinusoid_table[padding_idx] = 0.
|
||||
|
||||
return sinusoid_table
|
||||
|
||||
def guided_attention(N, T, g=0.2):
|
||||
'''Guided attention. Refer to page 3 on the paper.'''
|
||||
W = np.zeros((N, T), dtype=np.float32)
|
||||
for n_pos in range(W.shape[0]):
|
||||
for t_pos in range(W.shape[1]):
|
||||
W[n_pos, t_pos] = 1 - np.exp(-(t_pos / float(T) - n_pos / float(N)) ** 2 / (2 * g * g))
|
||||
return W
|
Loading…
Reference in New Issue