Merge branch 'master' into 'master'

Modified data.py of TransformerTTS

See merge request !30
This commit is contained in:
liuyibing01 2020-03-06 19:53:59 +08:00
commit 8e86389ea4
32 changed files with 919 additions and 113 deletions

View File

@ -3,8 +3,8 @@ audio:
n_fft: 2048 n_fft: 2048
sr: 22050 sr: 22050
preemphasis: 0.97 preemphasis: 0.97
hop_length: 275 hop_length: 256
win_length: 1102 win_length: 1024
power: 1.2 power: 1.2
min_level_db: -100 min_level_db: -100
ref_level_db: 20 ref_level_db: 20

View File

@ -52,6 +52,12 @@ def add_config_options_to_parser(parser):
type=int, type=int,
default=0, default=0,
help="use data parallel or not during training.") help="use data parallel or not during training.")
parser.add_argument(
'--alpha',
type=float,
default=1.0,
help="The hyperparameter to determine the length of the expanded sequence \
mel, thereby controlling the voice speed.")
parser.add_argument( parser.add_argument(
'--data_path', '--data_path',

View File

@ -24,6 +24,7 @@ import paddle.fluid.dygraph as dg
from parakeet.g2p.en import text_to_sequence from parakeet.g2p.en import text_to_sequence
from parakeet import audio from parakeet import audio
from parakeet.models.fastspeech.fastspeech import FastSpeech from parakeet.models.fastspeech.fastspeech import FastSpeech
from parakeet.models.transformer_tts.utils import *
def load_checkpoint(step, model_path): def load_checkpoint(step, model_path):
@ -59,12 +60,26 @@ def synthesis(text_input, args):
model.eval() model.eval()
text = np.asarray(text_to_sequence(text_input)) text = np.asarray(text_to_sequence(text_input))
text = fluid.layers.unsqueeze(dg.to_variable(text), [0]) text = np.expand_dims(text, axis=0)
pos_text = np.arange(1, text.shape[1] + 1) pos_text = np.arange(1, text.shape[1] + 1)
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0]) pos_text = np.expand_dims(pos_text, axis=0)
enc_non_pad_mask = get_non_pad_mask(pos_text).astype(np.float32)
enc_slf_attn_mask = get_attn_key_pad_mask(pos_text,
text).astype(np.float32)
text = dg.to_variable(text)
pos_text = dg.to_variable(pos_text)
enc_non_pad_mask = dg.to_variable(enc_non_pad_mask)
enc_slf_attn_mask = dg.to_variable(enc_slf_attn_mask)
mel_output, mel_output_postnet = model( mel_output, mel_output_postnet = model(
text, pos_text, alpha=args.alpha) text,
pos_text,
alpha=args.alpha,
enc_non_pad_mask=enc_non_pad_mask,
enc_slf_attn_mask=enc_slf_attn_mask,
dec_non_pad_mask=None,
dec_slf_attn_mask=None)
_ljspeech_processor = audio.AudioProcessor( _ljspeech_processor = audio.AudioProcessor(
sample_rate=cfg['audio']['sr'], sample_rate=cfg['audio']['sr'],

View File

@ -21,6 +21,7 @@ from parse import add_config_options_to_parser
from pprint import pprint from pprint import pprint
from ruamel import yaml from ruamel import yaml
from tqdm import tqdm from tqdm import tqdm
from matplotlib import cm
from collections import OrderedDict from collections import OrderedDict
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter
import paddle.fluid.dygraph as dg import paddle.fluid.dygraph as dg
@ -66,12 +67,12 @@ def main(args):
with dg.guard(place): with dg.guard(place):
with fluid.unique_name.guard(): with fluid.unique_name.guard():
transformerTTS = TransformerTTS(cfg) transformer_tts = TransformerTTS(cfg)
model_dict, _ = load_checkpoint( model_dict, _ = load_checkpoint(
str(args.transformer_step), str(args.transformer_step),
os.path.join(args.transtts_path, "transformer")) os.path.join(args.transtts_path, "transformer"))
transformerTTS.set_dict(model_dict) transformer_tts.set_dict(model_dict)
transformerTTS.eval() transformer_tts.eval()
model = FastSpeech(cfg) model = FastSpeech(cfg)
model.train() model.train()
@ -100,13 +101,33 @@ def main(args):
for i, data in enumerate(pbar): for i, data in enumerate(pbar):
pbar.set_description('Processing at epoch %d' % epoch) pbar.set_description('Processing at epoch %d' % epoch)
character, mel, mel_input, pos_text, pos_mel, text_length, mel_lens = data (character, mel, mel_input, pos_text, pos_mel, text_length,
mel_lens, enc_slf_mask, enc_query_mask, dec_slf_mask,
enc_dec_mask, dec_query_slf_mask, dec_query_mask) = data
_, _, attn_probs, _, _, _ = transformerTTS( _, _, attn_probs, _, _, _ = transformer_tts(
character, mel_input, pos_text, pos_mel) character,
alignment = dg.to_variable( mel_input,
get_alignment(attn_probs, mel_lens, cfg[ pos_text,
'transformer_head'])).astype(np.float32) pos_mel,
dec_slf_mask=dec_slf_mask,
enc_slf_mask=enc_slf_mask,
enc_query_mask=enc_query_mask,
enc_dec_mask=enc_dec_mask,
dec_query_slf_mask=dec_query_slf_mask,
dec_query_mask=dec_query_mask)
alignment, max_attn = get_alignment(attn_probs, mel_lens,
cfg['transformer_head'])
alignment = dg.to_variable(alignment).astype(np.float32)
if local_rank == 0 and global_step % 5 == 1:
x = np.uint8(
cm.viridis(max_attn[8, :mel_lens.numpy()[8]]) * 255)
writer.add_image(
'Attention_%d_0' % global_step,
x,
0,
dataformats="HWC")
global_step += 1 global_step += 1
@ -115,7 +136,11 @@ def main(args):
character, character,
pos_text, pos_text,
mel_pos=pos_mel, mel_pos=pos_mel,
length_target=alignment) length_target=alignment,
enc_non_pad_mask=enc_query_mask,
enc_slf_attn_mask=enc_slf_mask,
dec_non_pad_mask=dec_query_slf_mask,
dec_slf_attn_mask=dec_slf_mask)
mel_output, mel_output_postnet, duration_predictor_output, _, _ = result mel_output, mel_output_postnet, duration_predictor_output, _, _ = result
mel_loss = layers.mse_loss(mel_output, mel) mel_loss = layers.mse_loss(mel_output, mel)
mel_postnet_loss = layers.mse_loss(mel_output_postnet, mel) mel_postnet_loss = layers.mse_loss(mel_output_postnet, mel)

View File

@ -1,6 +1,6 @@
# train model # train model
# if you wish to resume from an exists model, uncomment --checkpoint_path and --fastspeech_step # if you wish to resume from an exists model, uncomment --checkpoint_path and --fastspeech_step
CUDA_VISIBLE_DEVICES=0\ export CUDA_VISIBLE_DEVICES=0
python -u train.py \ python -u train.py \
--batch_size=32 \ --batch_size=32 \
--epochs=10000 \ --epochs=10000 \

View File

@ -9,3 +9,6 @@ audio:
min_level_db: -100 min_level_db: -100
ref_level_db: 20 ref_level_db: 20
outputs_per_step: 1 outputs_per_step: 1
hidden_size: 256
embedding_size: 512

View File

@ -23,7 +23,8 @@ from parakeet import audio
from parakeet.data.sampler import * from parakeet.data.sampler import *
from parakeet.data.datacargo import DataCargo from parakeet.data.datacargo import DataCargo
from parakeet.data.batch import TextIDBatcher, SpecBatcher from parakeet.data.batch import TextIDBatcher, SpecBatcher
from parakeet.data.dataset import DatasetMixin, TransformDataset from parakeet.data.dataset import DatasetMixin, TransformDataset, CacheDataset
from parakeet.models.transformer_tts.utils import *
class LJSpeechLoader: class LJSpeechLoader:
@ -40,6 +41,8 @@ class LJSpeechLoader:
metadata = LJSpeechMetaData(LJSPEECH_ROOT) metadata = LJSpeechMetaData(LJSPEECH_ROOT)
transformer = LJSpeech(config) transformer = LJSpeech(config)
dataset = TransformDataset(metadata, transformer) dataset = TransformDataset(metadata, transformer)
dataset = CacheDataset(dataset)
sampler = DistributedSampler( sampler = DistributedSampler(
len(metadata), nranks, rank, shuffle=shuffle) len(metadata), nranks, rank, shuffle=shuffle)
@ -196,8 +199,18 @@ def batch_examples(batch):
SpecBatcher(pad_value=0.)(mels), axes=(0, 2, 1)) #(B,T,num_mels) SpecBatcher(pad_value=0.)(mels), axes=(0, 2, 1)) #(B,T,num_mels)
mel_inputs = np.transpose( mel_inputs = np.transpose(
SpecBatcher(pad_value=0.)(mel_inputs), axes=(0, 2, 1)) #(B,T,num_mels) SpecBatcher(pad_value=0.)(mel_inputs), axes=(0, 2, 1)) #(B,T,num_mels)
enc_slf_mask = get_attn_key_pad_mask(pos_texts, texts).astype(np.float32)
enc_query_mask = get_non_pad_mask(pos_texts).astype(np.float32)
dec_slf_mask = get_dec_attn_key_pad_mask(pos_mels,
mel_inputs).astype(np.float32)
enc_dec_mask = get_attn_key_pad_mask(enc_query_mask[:, :, 0],
mel_inputs).astype(np.float32)
dec_query_slf_mask = get_non_pad_mask(pos_mels).astype(np.float32)
dec_query_mask = get_non_pad_mask(pos_mels).astype(np.float32)
return (texts, mels, mel_inputs, pos_texts, pos_mels, np.array(text_lens), return (texts, mels, mel_inputs, pos_texts, pos_mels, np.array(text_lens),
np.array(mel_lens)) np.array(mel_lens), enc_slf_mask, enc_query_mask, dec_slf_mask,
enc_dec_mask, dec_query_slf_mask, dec_query_mask)
def batch_examples_vocoder(batch): def batch_examples_vocoder(batch):

View File

@ -16,6 +16,7 @@ from scipy.io.wavfile import write
from parakeet.g2p.en import text_to_sequence from parakeet.g2p.en import text_to_sequence
import numpy as np import numpy as np
from tqdm import tqdm from tqdm import tqdm
from matplotlib import cm
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter
from ruamel import yaml from ruamel import yaml
import paddle.fluid as fluid import paddle.fluid as fluid
@ -25,6 +26,7 @@ import argparse
from parse import add_config_options_to_parser from parse import add_config_options_to_parser
from pprint import pprint from pprint import pprint
from collections import OrderedDict from collections import OrderedDict
from parakeet.models.transformer_tts.utils import *
from parakeet import audio from parakeet import audio
from parakeet.models.transformer_tts.vocoder import Vocoder from parakeet.models.transformer_tts.vocoder import Vocoder
from parakeet.models.transformer_tts.transformer_tts import TransformerTTS from parakeet.models.transformer_tts.transformer_tts import TransformerTTS
@ -78,14 +80,18 @@ def synthesis(text_input, args):
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0]) pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0])
pbar = tqdm(range(args.max_len)) pbar = tqdm(range(args.max_len))
for i in pbar: for i in pbar:
dec_slf_mask = get_triu_tensor(
mel_input.numpy(), mel_input.numpy()).astype(np.float32)
dec_slf_mask = fluid.layers.cast(
dg.to_variable(dec_slf_mask == 0), np.float32)
pos_mel = np.arange(1, mel_input.shape[1] + 1) pos_mel = np.arange(1, mel_input.shape[1] + 1)
pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel), [0]) pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel), [0])
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model( mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
text, mel_input, pos_text, pos_mel) text, mel_input, pos_text, pos_mel, dec_slf_mask)
mel_input = fluid.layers.concat( mel_input = fluid.layers.concat(
[mel_input, postnet_pred[:, -1:, :]], axis=1) [mel_input, postnet_pred[:, -1:, :]], axis=1)
mag_pred = model_vocoder(postnet_pred) mag_pred = model_vocoder(postnet_pred)
_ljspeech_processor = audio.AudioProcessor( _ljspeech_processor = audio.AudioProcessor(
@ -111,6 +117,33 @@ def synthesis(text_input, args):
wav = _ljspeech_processor.inv_spectrogram( wav = _ljspeech_processor.inv_spectrogram(
fluid.layers.transpose( fluid.layers.transpose(
fluid.layers.squeeze(mag_pred, [0]), [1, 0]).numpy()) fluid.layers.squeeze(mag_pred, [0]), [1, 0]).numpy())
global_step = 0
for i, prob in enumerate(attn_probs):
for j in range(4):
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
writer.add_image(
'Attention_%d_0' % global_step,
x,
i * 4 + j,
dataformats="HWC")
for i, prob in enumerate(attn_enc):
for j in range(4):
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
writer.add_image(
'Attention_enc_%d_0' % global_step,
x,
i * 4 + j,
dataformats="HWC")
for i, prob in enumerate(attn_dec):
for j in range(4):
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
writer.add_image(
'Attention_dec_%d_0' % global_step,
x,
i * 4 + j,
dataformats="HWC")
writer.add_audio(text_input, wav, 0, cfg['audio']['sr']) writer.add_audio(text_input, wav, 0, cfg['audio']['sr'])
if not os.path.exists(args.sample_path): if not os.path.exists(args.sample_path):
os.mkdir(args.sample_path) os.mkdir(args.sample_path)
@ -124,4 +157,6 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Synthesis model") parser = argparse.ArgumentParser(description="Synthesis model")
add_config_options_to_parser(parser) add_config_options_to_parser(parser)
args = parser.parse_args() args = parser.parse_args()
synthesis("Transformer model is so fast!", args) synthesis(
"They emphasized the necessity that the information now being furnished be handled with judgment and care.",
args)

View File

@ -2,10 +2,10 @@
# train model # train model
CUDA_VISIBLE_DEVICES=0 \ CUDA_VISIBLE_DEVICES=0 \
python -u synthesis.py \ python -u synthesis.py \
--max_len=50 \ --max_len=600 \
--transformer_step=160000 \ --transformer_step=160000 \
--vocoder_step=70000 \ --vocoder_step=90000 \
--use_gpu=1 --use_gpu=1 \
--checkpoint_path='./checkpoint' \ --checkpoint_path='./checkpoint' \
--log_dir='./log' \ --log_dir='./log' \
--sample_path='./sample' \ --sample_path='./sample' \

View File

@ -14,7 +14,7 @@
import os import os
from tqdm import tqdm from tqdm import tqdm
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter
from pathlib import Path #from pathlib import Path
from collections import OrderedDict from collections import OrderedDict
import argparse import argparse
from parse import add_config_options_to_parser from parse import add_config_options_to_parser
@ -89,21 +89,31 @@ def main(args):
pbar = tqdm(reader) pbar = tqdm(reader)
for i, data in enumerate(pbar): for i, data in enumerate(pbar):
pbar.set_description('Processing at epoch %d' % epoch) pbar.set_description('Processing at epoch %d' % epoch)
character, mel, mel_input, pos_text, pos_mel, text_length, _ = data character, mel, mel_input, pos_text, pos_mel, text_length, _, enc_slf_mask, enc_query_mask, dec_slf_mask, enc_dec_mask, dec_query_slf_mask, dec_query_mask = data
global_step += 1 global_step += 1
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
character, mel_input, pos_text, pos_mel)
label = (pos_mel == 0).astype(np.float32) mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
character,
mel_input,
pos_text,
pos_mel,
dec_slf_mask=dec_slf_mask,
enc_slf_mask=enc_slf_mask,
enc_query_mask=enc_query_mask,
enc_dec_mask=enc_dec_mask,
dec_query_slf_mask=dec_query_slf_mask,
dec_query_mask=dec_query_mask)
mel_loss = layers.mean( mel_loss = layers.mean(
layers.abs(layers.elementwise_sub(mel_pred, mel))) layers.abs(layers.elementwise_sub(mel_pred, mel)))
post_mel_loss = layers.mean( post_mel_loss = layers.mean(
layers.abs(layers.elementwise_sub(postnet_pred, mel))) layers.abs(layers.elementwise_sub(postnet_pred, mel)))
loss = mel_loss + post_mel_loss loss = mel_loss + post_mel_loss
# Note: When used stop token loss the learning did not work. # Note: When used stop token loss the learning did not work.
if args.stop_token: if args.stop_token:
label = (pos_mel == 0).astype(np.float32)
stop_loss = cross_entropy(stop_preds, label) stop_loss = cross_entropy(stop_preds, label)
loss = loss + stop_loss loss = loss + stop_loss

View File

@ -1,7 +1,7 @@
# train model # train model
# if you wish to resume from an exists model, uncomment --checkpoint_path and --transformer_step # if you wish to resume from an exists model, uncomment --checkpoint_path and --transformer_step
CUDA_VISIBLE_DEVICES=0 \ export CUDA_VISIBLE_DEVICES=2
python -u train_transformer.py \ python -u train_transformer.py \
--batch_size=32 \ --batch_size=32 \
--epochs=10000 \ --epochs=10000 \

View File

@ -14,6 +14,7 @@
import six import six
import numpy as np import numpy as np
from tqdm import tqdm
class DatasetMixin(object): class DatasetMixin(object):

View File

@ -32,6 +32,7 @@ class Decoder(dg.Layer):
super(Decoder, self).__init__() super(Decoder, self).__init__()
n_position = len_max_seq + 1 n_position = len_max_seq + 1
self.n_head = n_head
self.pos_inp = get_sinusoid_encoding_table( self.pos_inp = get_sinusoid_encoding_table(
n_position, d_model, padding_idx=0) n_position, d_model, padding_idx=0)
self.position_enc = dg.Embedding( self.position_enc = dg.Embedding(
@ -55,7 +56,7 @@ class Decoder(dg.Layer):
for i, layer in enumerate(self.layer_stack): for i, layer in enumerate(self.layer_stack):
self.add_sublayer('fft_{}'.format(i), layer) self.add_sublayer('fft_{}'.format(i), layer)
def forward(self, enc_seq, enc_pos): def forward(self, enc_seq, enc_pos, non_pad_mask, slf_attn_mask=None):
""" """
Decoder layer of FastSpeech. Decoder layer of FastSpeech.
@ -69,10 +70,7 @@ class Decoder(dg.Layer):
dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list. dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list.
""" """
dec_slf_attn_list = [] dec_slf_attn_list = []
slf_attn_mask = layers.expand(slf_attn_mask, [self.n_head, 1, 1])
# -- Prepare masks
slf_attn_mask = get_attn_key_pad_mask(seq_k=enc_pos, seq_q=enc_pos)
non_pad_mask = get_non_pad_mask(enc_pos)
# -- Forward # -- Forward
dec_output = enc_seq + self.position_enc(enc_pos) dec_output = enc_seq + self.position_enc(enc_pos)

View File

@ -32,14 +32,17 @@ class Encoder(dg.Layer):
dropout=0.1): dropout=0.1):
super(Encoder, self).__init__() super(Encoder, self).__init__()
n_position = len_max_seq + 1 n_position = len_max_seq + 1
self.n_head = n_head
self.src_word_emb = dg.Embedding( self.src_word_emb = dg.Embedding(
size=[n_src_vocab, d_model], padding_idx=0) size=[n_src_vocab, d_model],
padding_idx=0,
param_attr=fluid.initializer.Normal(
loc=0.0, scale=1.0))
self.pos_inp = get_sinusoid_encoding_table( self.pos_inp = get_sinusoid_encoding_table(
n_position, d_model, padding_idx=0) n_position, d_model, padding_idx=0)
self.position_enc = dg.Embedding( self.position_enc = dg.Embedding(
size=[n_position, d_model], size=[n_position, d_model],
padding_idx=0,
param_attr=fluid.ParamAttr( param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer( initializer=fluid.initializer.NumpyArrayInitializer(
self.pos_inp), self.pos_inp),
@ -58,7 +61,7 @@ class Encoder(dg.Layer):
for i, layer in enumerate(self.layer_stack): for i, layer in enumerate(self.layer_stack):
self.add_sublayer('fft_{}'.format(i), layer) self.add_sublayer('fft_{}'.format(i), layer)
def forward(self, character, text_pos): def forward(self, character, text_pos, non_pad_mask, slf_attn_mask=None):
""" """
Encoder layer of FastSpeech. Encoder layer of FastSpeech.
@ -74,10 +77,7 @@ class Encoder(dg.Layer):
enc_slf_attn_list (list<Variable>), Len(n_layers), Shape(B * n_head, text_T, text_T), the encoder self attention list. enc_slf_attn_list (list<Variable>), Len(n_layers), Shape(B * n_head, text_T, text_T), the encoder self attention list.
""" """
enc_slf_attn_list = [] enc_slf_attn_list = []
# -- prepare masks slf_attn_mask = layers.expand(slf_attn_mask, [self.n_head, 1, 1])
# shape character (N, T)
slf_attn_mask = get_attn_key_pad_mask(seq_k=character, seq_q=character)
non_pad_mask = get_non_pad_mask(character)
# -- Forward # -- Forward
enc_output = self.src_word_emb(character) + self.position_enc( enc_output = self.src_word_emb(character) + self.position_enc(
@ -90,4 +90,4 @@ class Encoder(dg.Layer):
slf_attn_mask=slf_attn_mask) slf_attn_mask=slf_attn_mask)
enc_slf_attn_list += [enc_slf_attn] enc_slf_attn_list += [enc_slf_attn]
return enc_output, non_pad_mask, enc_slf_attn_list return enc_output, enc_slf_attn_list

View File

@ -12,9 +12,11 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import math import math
import numpy as np
import paddle.fluid.dygraph as dg import paddle.fluid.dygraph as dg
import paddle.fluid as fluid import paddle.fluid as fluid
from parakeet.g2p.text.symbols import symbols from parakeet.g2p.text.symbols import symbols
from parakeet.models.transformer_tts.utils import *
from parakeet.models.transformer_tts.post_convnet import PostConvNet from parakeet.models.transformer_tts.post_convnet import PostConvNet
from parakeet.models.fastspeech.length_regulator import LengthRegulator from parakeet.models.fastspeech.length_regulator import LengthRegulator
from parakeet.models.fastspeech.encoder import Encoder from parakeet.models.fastspeech.encoder import Encoder
@ -78,6 +80,10 @@ class FastSpeech(dg.Layer):
def forward(self, def forward(self,
character, character,
text_pos, text_pos,
enc_non_pad_mask,
dec_non_pad_mask,
enc_slf_attn_mask=None,
dec_slf_attn_mask=None,
mel_pos=None, mel_pos=None,
length_target=None, length_target=None,
alpha=1.0): alpha=1.0):
@ -106,14 +112,20 @@ class FastSpeech(dg.Layer):
dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list. dec_slf_attn_list (Variable), Shape(B, mel_T, mel_T), the decoder self attention list.
""" """
encoder_output, non_pad_mask, enc_slf_attn_list = self.encoder( encoder_output, enc_slf_attn_list = self.encoder(
character, text_pos) character,
text_pos,
enc_non_pad_mask,
slf_attn_mask=enc_slf_attn_mask)
if fluid.framework._dygraph_tracer()._train_mode: if fluid.framework._dygraph_tracer()._train_mode:
length_regulator_output, duration_predictor_output = self.length_regulator( length_regulator_output, duration_predictor_output = self.length_regulator(
encoder_output, target=length_target, alpha=alpha) encoder_output, target=length_target, alpha=alpha)
decoder_output, dec_slf_attn_list = self.decoder( decoder_output, dec_slf_attn_list = self.decoder(
length_regulator_output, mel_pos) length_regulator_output,
mel_pos,
dec_non_pad_mask,
slf_attn_mask=dec_slf_attn_mask)
mel_output = self.mel_linear(decoder_output) mel_output = self.mel_linear(decoder_output)
mel_output_postnet = self.postnet(mel_output) + mel_output mel_output_postnet = self.postnet(mel_output) + mel_output
@ -122,8 +134,18 @@ class FastSpeech(dg.Layer):
else: else:
length_regulator_output, decoder_pos = self.length_regulator( length_regulator_output, decoder_pos = self.length_regulator(
encoder_output, alpha=alpha) encoder_output, alpha=alpha)
decoder_output, _ = self.decoder(length_regulator_output, slf_attn_mask = get_triu_tensor(
decoder_pos) decoder_pos.numpy(), decoder_pos.numpy()).astype(np.float32)
slf_attn_mask = fluid.layers.cast(
dg.to_variable(slf_attn_mask == 0), np.float32)
slf_attn_mask = dg.to_variable(slf_attn_mask)
dec_non_pad_mask = fluid.layers.unsqueeze(
(decoder_pos != 0).astype(np.float32), [-1])
decoder_output, _ = self.decoder(
length_regulator_output,
decoder_pos,
dec_non_pad_mask,
slf_attn_mask=slf_attn_mask)
mel_output = self.mel_linear(decoder_output) mel_output = self.mel_linear(decoder_output)
mel_output_postnet = self.postnet(mel_output) + mel_output mel_output_postnet = self.postnet(mel_output) + mel_output

View File

@ -46,7 +46,7 @@ class FFTBlock(dg.Layer):
padding=padding, padding=padding,
dropout=dropout) dropout=dropout)
def forward(self, enc_input, non_pad_mask=None, slf_attn_mask=None): def forward(self, enc_input, non_pad_mask, slf_attn_mask=None):
""" """
Feed Forward Transformer block in FastSpeech. Feed Forward Transformer block in FastSpeech.
@ -63,6 +63,7 @@ class FFTBlock(dg.Layer):
""" """
output, slf_attn = self.slf_attn( output, slf_attn = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask) enc_input, enc_input, enc_input, mask=slf_attn_mask)
output *= non_pad_mask output *= non_pad_mask
output = self.pos_ffn(output) output = self.pos_ffn(output)

View File

@ -146,11 +146,17 @@ class DurationPredictor(dg.Layer):
out = layers.transpose(encoder_output, [0, 2, 1]) out = layers.transpose(encoder_output, [0, 2, 1])
out = self.conv1(out) out = self.conv1(out)
out = layers.transpose(out, [0, 2, 1]) out = layers.transpose(out, [0, 2, 1])
out = layers.dropout(layers.relu(self.layer_norm1(out)), self.dropout) out = layers.dropout(
layers.relu(self.layer_norm1(out)),
self.dropout,
dropout_implementation='upscale_in_train')
out = layers.transpose(out, [0, 2, 1]) out = layers.transpose(out, [0, 2, 1])
out = self.conv2(out) out = self.conv2(out)
out = layers.transpose(out, [0, 2, 1]) out = layers.transpose(out, [0, 2, 1])
out = layers.dropout(layers.relu(self.layer_norm2(out)), self.dropout) out = layers.dropout(
layers.relu(self.layer_norm2(out)),
self.dropout,
dropout_implementation='upscale_in_train')
out = layers.relu(self.linear(out)) out = layers.relu(self.linear(out))
out = layers.squeeze(out, axes=[-1]) out = layers.squeeze(out, axes=[-1])

View File

@ -18,7 +18,6 @@ def get_alignment(attn_probs, mel_lens, n_head):
max_F = 0 max_F = 0
assert attn_probs[0].shape[0] % n_head == 0 assert attn_probs[0].shape[0] % n_head == 0
batch_size = int(attn_probs[0].shape[0] // n_head) batch_size = int(attn_probs[0].shape[0] // n_head)
#max_attn = attn_probs[0].numpy()[0,batch_size]
for i in range(len(attn_probs)): for i in range(len(attn_probs)):
multi_attn = attn_probs[i].numpy() multi_attn = attn_probs[i].numpy()
for j in range(n_head): for j in range(n_head):
@ -28,7 +27,7 @@ def get_alignment(attn_probs, mel_lens, n_head):
max_F = F max_F = F
max_attn = attn max_attn = attn
alignment = compute_duration(max_attn, mel_lens) alignment = compute_duration(max_attn, mel_lens)
return alignment return alignment, max_attn
def score_F(attn): def score_F(attn):

View File

@ -14,7 +14,7 @@
import math import math
import paddle.fluid.dygraph as dg import paddle.fluid.dygraph as dg
import paddle.fluid as fluid import paddle.fluid as fluid
from parakeet.modules.utils import * from parakeet.models.transformer_tts.utils import *
from parakeet.modules.multihead_attention import MultiheadAttention from parakeet.modules.multihead_attention import MultiheadAttention
from parakeet.modules.ffn import PositionwiseFeedForward from parakeet.modules.ffn import PositionwiseFeedForward
from parakeet.models.transformer_tts.prenet import PreNet from parakeet.models.transformer_tts.prenet import PreNet
@ -25,6 +25,7 @@ class Decoder(dg.Layer):
def __init__(self, num_hidden, config, num_head=4): def __init__(self, num_hidden, config, num_head=4):
super(Decoder, self).__init__() super(Decoder, self).__init__()
self.num_hidden = num_hidden self.num_hidden = num_hidden
self.num_head = num_head
param = fluid.ParamAttr() param = fluid.ParamAttr()
self.alpha = self.create_parameter( self.alpha = self.create_parameter(
shape=(1, ), shape=(1, ),
@ -98,28 +99,27 @@ class Decoder(dg.Layer):
outputs_per_step=config['audio']['outputs_per_step'], outputs_per_step=config['audio']['outputs_per_step'],
use_cudnn=True) use_cudnn=True)
def forward(self, key, value, query, c_mask, positional): def forward(self,
key,
value,
query,
positional,
mask,
m_mask=None,
m_self_mask=None,
zero_mask=None):
# get decoder mask with triangular matrix # get decoder mask with triangular matrix
if fluid.framework._dygraph_tracer()._train_mode: if fluid.framework._dygraph_tracer()._train_mode:
m_mask = get_non_pad_mask(positional) m_mask = layers.expand(m_mask, [self.num_head, 1, key.shape[1]])
mask = get_attn_key_pad_mask((positional == 0).astype(np.float32), m_self_mask = layers.expand(m_self_mask,
query) [self.num_head, 1, query.shape[1]])
triu_tensor = dg.to_variable( mask = layers.expand(mask, [self.num_head, 1, 1])
get_triu_tensor(query.numpy(), query.numpy())).astype( zero_mask = layers.expand(zero_mask, [self.num_head, 1, 1])
np.float32)
mask = mask + triu_tensor
mask = fluid.layers.cast(mask == 0, np.float32)
# (batch_size, decoder_len, encoder_len)
zero_mask = get_attn_key_pad_mask(
layers.squeeze(c_mask, [-1]), query)
else: else:
mask = get_triu_tensor(query.numpy(), m_mask, m_self_mask, zero_mask = None, None, None
query.numpy()).astype(np.float32)
mask = fluid.layers.cast(dg.to_variable(mask == 0), np.float32)
m_mask, zero_mask = None, None
# Decoder pre-network # Decoder pre-network
query = self.decoder_prenet(query) query = self.decoder_prenet(query)
@ -132,7 +132,8 @@ class Decoder(dg.Layer):
query = positional * self.alpha + query query = positional * self.alpha + query
#positional dropout #positional dropout
query = fluid.layers.dropout(query, 0.1) query = fluid.layers.dropout(
query, 0.1, dropout_implementation='upscale_in_train')
# Attention decoder-decoder, encoder-decoder # Attention decoder-decoder, encoder-decoder
selfattn_list = list() selfattn_list = list()
@ -141,12 +142,13 @@ class Decoder(dg.Layer):
for selfattn, attn, ffn in zip(self.selfattn_layers, self.attn_layers, for selfattn, attn, ffn in zip(self.selfattn_layers, self.attn_layers,
self.ffns): self.ffns):
query, attn_dec = selfattn( query, attn_dec = selfattn(
query, query, query, mask=mask, query_mask=m_mask) query, query, query, mask=mask, query_mask=m_self_mask)
query, attn_dot = attn( query, attn_dot = attn(
key, value, query, mask=zero_mask, query_mask=m_mask) key, value, query, mask=zero_mask, query_mask=m_mask)
query = ffn(query) query = ffn(query)
selfattn_list.append(attn_dec) selfattn_list.append(attn_dec)
attn_list.append(attn_dot) attn_list.append(attn_dot)
# Mel linear projection # Mel linear projection
mel_out = self.mel_linear(query) mel_out = self.mel_linear(query)
# Post Mel Network # Post Mel Network

View File

@ -23,6 +23,7 @@ class Encoder(dg.Layer):
def __init__(self, embedding_size, num_hidden, num_head=4): def __init__(self, embedding_size, num_hidden, num_head=4):
super(Encoder, self).__init__() super(Encoder, self).__init__()
self.num_hidden = num_hidden self.num_hidden = num_hidden
self.num_head = num_head
param = fluid.ParamAttr(initializer=fluid.initializer.Constant( param = fluid.ParamAttr(initializer=fluid.initializer.Constant(
value=1.0)) value=1.0))
self.alpha = self.create_parameter( self.alpha = self.create_parameter(
@ -31,7 +32,6 @@ class Encoder(dg.Layer):
1024, self.num_hidden, padding_idx=0) 1024, self.num_hidden, padding_idx=0)
self.pos_emb = dg.Embedding( self.pos_emb = dg.Embedding(
size=[1024, num_hidden], size=[1024, num_hidden],
padding_idx=0,
param_attr=fluid.ParamAttr( param_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer( initializer=fluid.initializer.NumpyArrayInitializer(
self.pos_inp), self.pos_inp),
@ -56,13 +56,15 @@ class Encoder(dg.Layer):
for i, layer in enumerate(self.ffns): for i, layer in enumerate(self.ffns):
self.add_sublayer("ffns_{}".format(i), layer) self.add_sublayer("ffns_{}".format(i), layer)
def forward(self, x, positional): def forward(self, x, positional, mask=None, query_mask=None):
if fluid.framework._dygraph_tracer()._train_mode: if fluid.framework._dygraph_tracer()._train_mode:
query_mask = get_non_pad_mask(positional) seq_len_key = x.shape[1]
mask = get_attn_key_pad_mask(positional, x) query_mask = layers.expand(query_mask,
[self.num_head, 1, seq_len_key])
mask = layers.expand(mask, [self.num_head, 1, 1])
else: else:
query_mask, mask = None, None query_mask, mask = None, None
# Encoder pre_network # Encoder pre_network
x = self.encoder_prenet(x) #(N,T,C) x = self.encoder_prenet(x) #(N,T,C)
@ -72,7 +74,7 @@ class Encoder(dg.Layer):
x = positional * self.alpha + x #(N, T, C) x = positional * self.alpha + x #(N, T, C)
# Positional dropout # Positional dropout
x = layers.dropout(x, 0.1) x = layers.dropout(x, 0.1, dropout_implementation='upscale_in_train')
# Self attention encoder # Self attention encoder
attentions = list() attentions = list()
@ -81,4 +83,4 @@ class Encoder(dg.Layer):
x = ffn(x) x = ffn(x)
attentions.append(attention) attentions.append(attention)
return x, query_mask, attentions return x, attentions

View File

@ -27,7 +27,10 @@ class EncoderPrenet(dg.Layer):
self.num_hidden = num_hidden self.num_hidden = num_hidden
self.use_cudnn = use_cudnn self.use_cudnn = use_cudnn
self.embedding = dg.Embedding( self.embedding = dg.Embedding(
size=[len(symbols), embedding_size], padding_idx=None) size=[len(symbols), embedding_size],
padding_idx=0,
param_attr=fluid.initializer.Normal(
loc=0.0, scale=1.0))
self.conv_list = [] self.conv_list = []
k = math.sqrt(1 / embedding_size) k = math.sqrt(1 / embedding_size)
self.conv_list.append( self.conv_list.append(
@ -78,10 +81,14 @@ class EncoderPrenet(dg.Layer):
low=-k, high=k))) low=-k, high=k)))
def forward(self, x): def forward(self, x):
x = self.embedding(x) #(batch_size, seq_len, embending_size) x = self.embedding(x) #(batch_size, seq_len, embending_size)
x = layers.transpose(x, [0, 2, 1]) x = layers.transpose(x, [0, 2, 1])
for batch_norm, conv in zip(self.batch_norm_list, self.conv_list): for batch_norm, conv in zip(self.batch_norm_list, self.conv_list):
x = layers.dropout(layers.relu(batch_norm(conv(x))), 0.2) x = layers.dropout(
layers.relu(batch_norm(conv(x))),
0.2,
dropout_implementation='upscale_in_train')
x = layers.transpose(x, [0, 2, 1]) #(N,T,C) x = layers.transpose(x, [0, 2, 1]) #(N,T,C)
x = self.projection(x) x = self.projection(x)

View File

@ -108,11 +108,16 @@ class PostConvNet(dg.Layer):
conv = self.conv_list[i] conv = self.conv_list[i]
input = layers.dropout( input = layers.dropout(
layers.tanh(batch_norm(conv(input)[:, :, :len])), self.dropout) layers.tanh(batch_norm(conv(input)[:, :, :len])),
self.dropout,
dropout_implementation='upscale_in_train')
conv = self.conv_list[self.num_conv - 1] conv = self.conv_list[self.num_conv - 1]
input = conv(input)[:, :, :len] input = conv(input)[:, :, :len]
if self.batchnorm_last: if self.batchnorm_last:
batch_norm = self.batch_norm_list[self.num_conv - 1] batch_norm = self.batch_norm_list[self.num_conv - 1]
input = layers.dropout(batch_norm(input), self.dropout) input = layers.dropout(
batch_norm(input),
self.dropout,
dropout_implementation='upscale_in_train')
output = layers.transpose(input, [0, 2, 1]) output = layers.transpose(input, [0, 2, 1])
return output return output

View File

@ -56,6 +56,12 @@ class PreNet(dg.Layer):
Returns: Returns:
x (Variable), Shape(B, T, C), the result after pernet. x (Variable), Shape(B, T, C), the result after pernet.
""" """
x = layers.dropout(layers.relu(self.linear1(x)), self.dropout_rate) x = layers.dropout(
x = layers.dropout(layers.relu(self.linear2(x)), self.dropout_rate) layers.relu(self.linear1(x)),
self.dropout_rate,
dropout_implementation='upscale_in_train')
x = layers.dropout(
layers.relu(self.linear2(x)),
self.dropout_rate,
dropout_implementation='upscale_in_train')
return x return x

View File

@ -24,11 +24,29 @@ class TransformerTTS(dg.Layer):
self.decoder = Decoder(config['hidden_size'], config) self.decoder = Decoder(config['hidden_size'], config)
self.config = config self.config = config
def forward(self, characters, mel_input, pos_text, pos_mel): def forward(self,
characters,
key, c_mask, attns_enc = self.encoder(characters, pos_text) mel_input,
pos_text,
pos_mel,
dec_slf_mask,
enc_slf_mask=None,
enc_query_mask=None,
enc_dec_mask=None,
dec_query_slf_mask=None,
dec_query_mask=None):
key, attns_enc = self.encoder(
characters, pos_text, mask=enc_slf_mask, query_mask=enc_query_mask)
mel_output, postnet_output, attn_probs, stop_preds, attns_dec = self.decoder( mel_output, postnet_output, attn_probs, stop_preds, attns_dec = self.decoder(
key, key, mel_input, c_mask, pos_mel) key,
key,
mel_input,
pos_mel,
mask=dec_slf_mask,
zero_mask=enc_dec_mask,
m_self_mask=dec_query_slf_mask,
m_mask=dec_query_mask)
return mel_output, postnet_output, attn_probs, stop_preds, attns_enc, attns_dec
return mel_output, postnet_output, attn_probs, stop_preds, attns_enc, attns_dec return mel_output, postnet_output, attn_probs, stop_preds, attns_enc, attns_dec

View File

@ -51,7 +51,9 @@ def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
def get_non_pad_mask(seq): def get_non_pad_mask(seq):
return layers.unsqueeze((seq != 0).astype(np.float32), [-1]) mask = (seq != 0).astype(np.float32)
mask = np.expand_dims(mask, axis=-1)
return mask
def get_attn_key_pad_mask(seq_k, seq_q): def get_attn_key_pad_mask(seq_k, seq_q):
@ -60,8 +62,22 @@ def get_attn_key_pad_mask(seq_k, seq_q):
# Expand to fit the shape of key query attention matrix. # Expand to fit the shape of key query attention matrix.
len_q = seq_q.shape[1] len_q = seq_q.shape[1]
padding_mask = (seq_k != 0).astype(np.float32) padding_mask = (seq_k != 0).astype(np.float32)
padding_mask = layers.expand( padding_mask = np.expand_dims(padding_mask, axis=1)
layers.unsqueeze(padding_mask, [1]), [1, len_q, 1]) padding_mask = padding_mask.repeat([len_q], axis=1)
padding_mask = (padding_mask == 0).astype(np.float32) * (-2**32 + 1)
return padding_mask
def get_dec_attn_key_pad_mask(seq_k, seq_q):
''' For masking out the padding part of key sequence. '''
# Expand to fit the shape of key query attention matrix.
len_q = seq_q.shape[1]
padding_mask = (seq_k == 0).astype(np.float32)
padding_mask = np.expand_dims(padding_mask, axis=1)
triu_tensor = get_triu_tensor(seq_q, seq_q)
padding_mask = padding_mask.repeat([len_q], axis=1) + triu_tensor
padding_mask = (padding_mask != 0).astype(np.float32) * (-2**32 + 1)
return padding_mask return padding_mask

View File

@ -53,11 +53,9 @@ class DynamicGRU(dg.Layer):
if self.is_reverse: if self.is_reverse:
i = inputs.shape[1] - 1 - i i = inputs.shape[1] - 1 - i
input_ = inputs[:, i:i + 1, :] input_ = inputs[:, i:i + 1, :]
input_ = layers.reshape( input_ = layers.reshape(input_, [-1, input_.shape[2]])
input_, [-1, input_.shape[2]], inplace=False)
hidden, reset, gate = self.gru_unit(input_, hidden) hidden, reset, gate = self.gru_unit(input_, hidden)
hidden_ = layers.reshape( hidden_ = layers.reshape(hidden, [-1, 1, hidden.shape[1]])
hidden, [-1, 1, hidden.shape[1]], inplace=False)
res.append(hidden_) res.append(hidden_)
if self.is_reverse: if self.is_reverse:
res = res[::-1] res = res[::-1]

View File

@ -71,7 +71,8 @@ class PositionwiseFeedForward(dg.Layer):
x = self.w_2(layers.relu(self.w_1(x))) x = self.w_2(layers.relu(self.w_1(x)))
# dropout # dropout
x = layers.dropout(x, self.dropout) x = layers.dropout(
x, self.dropout, dropout_implementation='upscale_in_train')
x = layers.transpose(x, [0, 2, 1]) x = layers.transpose(x, [0, 2, 1])
# residual connection # residual connection

610
parakeet/modules/modules.py Normal file
View File

@ -0,0 +1,610 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import fluid
import paddle.fluid.dygraph as dg
import numpy as np
from . import conv
from . import weight_norm
def FC(name_scope,
in_features,
size,
num_flatten_dims=1,
relu=False,
dropout=0.0,
epsilon=1e-30,
act=None,
is_test=False,
dtype="float32"):
"""
A special Linear Layer, when it is used with dropout, the weight is
initialized as normal(0, std=np.sqrt((1-dropout) / in_features))
"""
# stds
if isinstance(in_features, int):
in_features = [in_features]
stds = [np.sqrt((1 - dropout) / in_feature) for in_feature in in_features]
if relu:
stds = [std * np.sqrt(2.0) for std in stds]
weight_inits = [
fluid.initializer.NormalInitializer(scale=std) for std in stds
]
bias_init = fluid.initializer.ConstantInitializer(0.0)
# param attrs
weight_attrs = [fluid.ParamAttr(initializer=init) for init in weight_inits]
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = weight_norm.FC(name_scope,
size,
num_flatten_dims=num_flatten_dims,
param_attr=weight_attrs,
bias_attr=bias_attr,
act=act,
dtype=dtype)
return layer
def Conv1D(name_scope,
in_channels,
num_filters,
filter_size=3,
dilation=1,
groups=None,
causal=False,
std_mul=1.0,
dropout=0.0,
use_cudnn=True,
act=None,
dtype="float32"):
"""
A special Conv1D Layer, when it is used with dropout, the weight is
initialized as
normal(0, std=np.sqrt(std_mul * (1-dropout) / (filter_size * in_features)))
"""
# std
std = np.sqrt((std_mul * (1 - dropout)) / (filter_size * in_channels))
weight_init = fluid.initializer.NormalInitializer(loc=0.0, scale=std)
bias_init = fluid.initializer.ConstantInitializer(0.0)
# param attrs
weight_attr = fluid.ParamAttr(initializer=weight_init)
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = conv.Conv1D(
name_scope,
in_channels,
num_filters,
filter_size,
dilation,
groups=groups,
causal=causal,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer
def Embedding(name_scope,
num_embeddings,
embed_dim,
is_sparse=False,
is_distributed=False,
padding_idx=None,
std=0.01,
dtype="float32"):
# param attrs
weight_attr = fluid.ParamAttr(initializer=fluid.initializer.Normal(
scale=std))
layer = dg.Embedding(
name_scope, (num_embeddings, embed_dim),
padding_idx=padding_idx,
param_attr=weight_attr,
dtype=dtype)
return layer
class Conv1DGLU(dg.Layer):
"""
A Convolution 1D block with GLU activation. It also applys dropout for the
input x. It fuses speaker embeddings through a FC activated by softsign. It
has residual connection from the input x, and scale the output by
np.sqrt(0.5).
"""
def __init__(self,
name_scope,
n_speakers,
speaker_dim,
in_channels,
num_filters,
filter_size,
dilation,
std_mul=4.0,
dropout=0.0,
causal=False,
residual=True,
dtype="float32"):
super(Conv1DGLU, self).__init__(name_scope, dtype=dtype)
# conv spec
self.in_channels = in_channels
self.n_speakers = n_speakers
self.speaker_dim = speaker_dim
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.residual = residual
# weight init and dropout
self.std_mul = std_mul
self.dropout = dropout
if residual:
assert (
in_channels == num_filters
), "this block uses residual connection"\
"the input_channes should equals num_filters"
self.conv = Conv1D(
self.full_name(),
in_channels,
2 * num_filters,
filter_size,
dilation,
causal=causal,
std_mul=std_mul,
dropout=dropout,
dtype=dtype)
if n_speakers > 1:
assert (speaker_dim is not None
), "speaker embed should not be null in multi-speaker case"
self.fc = Conv1D(
self.full_name(),
speaker_dim,
num_filters,
filter_size=1,
dilation=1,
causal=False,
act="softsign",
dtype=dtype)
def forward(self, x, speaker_embed_bc1t=None):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input of Conv1DGLU
layer, where B means batch_size, C_in means the input channels
T means input time steps.
speaker_embed_bct1 (Variable): Shape(B, C_sp, 1, T), expanded
speaker embed, where C_sp means speaker embedding size. Note
that when using residual connection, the Conv1DGLU does not
change the number of channels, so out channels equals input
channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the output of Conv1DGLU, where
C_out means the output channels of Conv1DGLU.
"""
residual = x
x = fluid.layers.dropout(x, self.dropout)
x = self.conv(x)
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
if speaker_embed_bc1t is not None:
sp = self.fc(speaker_embed_bc1t)
content = content + sp
# glu
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate), content)
if self.residual:
x = fluid.layers.scale(x + residual, np.sqrt(0.5))
return x
def add_input(self, x, speaker_embed_bc11=None):
"""
Inputs:
x: shape(B, num_filters, 1, time_steps)
speaker_embed_bc11: shape(B, speaker_dim, 1, time_steps)
Outputs:
out: shape(B, num_filters, 1, time_steps), where time_steps = 1
"""
residual = x
# add step input and produce step output
x = fluid.layers.dropout(x, self.dropout)
x = self.conv.add_input(x)
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
if speaker_embed_bc11 is not None:
sp = self.fc(speaker_embed_bc11)
content = content + sp
x = fluid.layers.elementwise_mul(fluid.layers.sigmoid(gate), content)
if self.residual:
x = fluid.layers.scale(x + residual, np.sqrt(0.5))
return x
def Conv1DTranspose(name_scope,
in_channels,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
groups=None,
std_mul=1.0,
dropout=0.0,
use_cudnn=True,
act=None,
dtype="float32"):
std = np.sqrt(std_mul * (1 - dropout) / (in_channels * filter_size))
weight_init = fluid.initializer.NormalInitializer(scale=std)
weight_attr = fluid.ParamAttr(initializer=weight_init)
bias_init = fluid.initializer.ConstantInitializer(0.0)
bias_attr = fluid.ParamAttr(initializer=bias_init)
layer = conv.Conv1DTranspose(
name_scope,
in_channels,
num_filters,
filter_size,
padding=padding,
stride=stride,
dilation=dilation,
groups=groups,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer
def compute_position_embedding(rad):
# rad is a transposed radius, shape(embed_dim, n_vocab)
embed_dim, n_vocab = rad.shape
even_dims = dg.to_variable(np.arange(0, embed_dim, 2).astype("int32"))
odd_dims = dg.to_variable(np.arange(1, embed_dim, 2).astype("int32"))
even_rads = fluid.layers.gather(rad, even_dims)
odd_rads = fluid.layers.gather(rad, odd_dims)
sines = fluid.layers.sin(even_rads)
cosines = fluid.layers.cos(odd_rads)
temp = fluid.layers.scatter(rad, even_dims, sines)
out = fluid.layers.scatter(temp, odd_dims, cosines)
out = fluid.layers.transpose(out, perm=[1, 0])
return out
def position_encoding_init(n_position,
d_pos_vec,
position_rate=1.0,
sinusoidal=True):
""" Init the sinusoid position encoding table """
# keep idx 0 for padding token position encoding zero vector
position_enc = np.array([[
position_rate * pos / np.power(10000, 2 * (i // 2) / d_pos_vec)
for i in range(d_pos_vec)
] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
if sinusoidal:
position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i
position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1
return position_enc
class PositionEmbedding(dg.Layer):
def __init__(self,
name_scope,
n_position,
d_pos_vec,
position_rate=1.0,
is_sparse=False,
is_distributed=False,
param_attr=None,
max_norm=None,
padding_idx=None,
dtype="float32"):
super(PositionEmbedding, self).__init__(name_scope, dtype=dtype)
self.embed = dg.Embedding(
self.full_name(),
size=(n_position, d_pos_vec),
is_sparse=is_sparse,
is_distributed=is_distributed,
padding_idx=None,
param_attr=param_attr,
dtype=dtype)
self.set_weight(
position_encoding_init(
n_position,
d_pos_vec,
position_rate=position_rate,
sinusoidal=False).astype(dtype))
self._is_sparse = is_sparse
self._is_distributed = is_distributed
self._remote_prefetch = self._is_sparse and (not self._is_distributed)
if self._remote_prefetch:
assert self._is_sparse is True and self._is_distributed is False
self._padding_idx = (-1 if padding_idx is None else padding_idx if
padding_idx >= 0 else (n_position + padding_idx))
self._position_rate = position_rate
self._max_norm = max_norm
self._dtype = dtype
def set_weight(self, array):
assert self.embed._w.shape == list(array.shape), "shape does not match"
self.embed._w._ivar.value().get_tensor().set(
array, fluid.framework._current_expected_place())
def forward(self, indices, speaker_position_rate=None):
"""
Args:
indices (Variable): Shape (B, T, 1), dtype: int64, position
indices, where B means the batch size, T means the time steps.
speaker_position_rate (Variable | float, optional), position
rate. It can be a float point number or a Variable with
shape (1,), then this speaker_position_rate is used for every
example. It can also be a Variable with shape (B, 1), which
contains a speaker position rate for each speaker.
Returns:
out (Variable): Shape(B, C_pos), position embedding, where C_pos
means position embedding size.
"""
rad = fluid.layers.transpose(self.embed._w, perm=[1, 0])
batch_size = indices.shape[0]
if speaker_position_rate is None:
weight = compute_position_embedding(rad)
out = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="lookup_table",
inputs={"Ids": indices,
"W": weight},
outputs={"Out": out},
attrs={
"is_sparse": self._is_sparse,
"is_distributed": self._is_distributed,
"remote_prefetch": self._remote_prefetch,
"padding_idx":
self._padding_idx, # special value for lookup table op
})
return out
elif (np.isscalar(speaker_position_rate) or
isinstance(speaker_position_rate, fluid.framework.Variable) and
speaker_position_rate.shape == [1, 1]):
# # make a weight
# scale the weight (the operand for sin & cos)
if np.isscalar(speaker_position_rate):
scaled_rad = fluid.layers.scale(rad, speaker_position_rate)
else:
scaled_rad = fluid.layers.elementwise_mul(
rad, speaker_position_rate[0])
weight = compute_position_embedding(scaled_rad)
out = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="lookup_table",
inputs={"Ids": indices,
"W": weight},
outputs={"Out": out},
attrs={
"is_sparse": self._is_sparse,
"is_distributed": self._is_distributed,
"remote_prefetch": self._remote_prefetch,
"padding_idx":
self._padding_idx, # special value for lookup table op
})
return out
elif np.prod(speaker_position_rate.shape) > 1:
assert speaker_position_rate.shape == [batch_size, 1]
outputs = []
for i in range(batch_size):
rate = speaker_position_rate[i] # rate has shape [1]
scaled_rad = fluid.layers.elementwise_mul(rad, rate)
weight = compute_position_embedding(scaled_rad)
out = self._helper.create_variable_for_type_inference(
self._dtype)
sequence = indices[i]
self._helper.append_op(
type="lookup_table",
inputs={"Ids": sequence,
"W": weight},
outputs={"Out": out},
attrs={
"is_sparse": self._is_sparse,
"is_distributed": self._is_distributed,
"remote_prefetch": self._remote_prefetch,
"padding_idx": -1,
})
outputs.append(out)
out = fluid.layers.stack(outputs)
return out
else:
raise Exception("Then you can just use position rate at init")
class Conv1D_GU(dg.Layer):
def __init__(self,
name_scope,
conditioner_dim,
in_channels,
num_filters,
filter_size,
dilation,
causal=False,
residual=True,
dtype="float32"):
super(Conv1D_GU, self).__init__(name_scope, dtype=dtype)
self.conditioner_dim = conditioner_dim
self.in_channels = in_channels
self.num_filters = num_filters
self.filter_size = filter_size
self.dilation = dilation
self.causal = causal
self.residual = residual
if residual:
assert (
in_channels == num_filters
), "this block uses residual connection"\
"the input_channels should equals num_filters"
self.conv = Conv1D(
self.full_name(),
in_channels,
2 * num_filters,
filter_size,
dilation,
causal=causal,
dtype=dtype)
self.fc = Conv1D(
self.full_name(),
conditioner_dim,
2 * num_filters,
filter_size=1,
dilation=1,
causal=False,
dtype=dtype)
def forward(self, x, skip=None, conditioner=None):
"""
Args:
x (Variable): Shape(B, C_in, 1, T), the input of Conv1D_GU
layer, where B means batch_size, C_in means the input channels
T means input time steps.
skip (Variable): Shape(B, C_in, 1, T), skip connection.
conditioner (Variable): Shape(B, C_con, 1, T), expanded mel
conditioner, where C_con is conditioner hidden dim which
equals the num of mel bands. Note that when using residual
connection, the Conv1D_GU does not change the number of
channels, so out channels equals input channels.
Returns:
x (Variable): Shape(B, C_out, 1, T), the output of Conv1D_GU, where
C_out means the output channels of Conv1D_GU.
skip (Variable): Shape(B, C_out, 1, T), skip connection.
"""
residual = x
x = self.conv(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(
fluid.layers.sigmoid(gate), fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def add_input(self, x, skip=None, conditioner=None):
"""
Inputs:
x: shape(B, num_filters, 1, time_steps)
skip: shape(B, num_filters, 1, time_steps), skip connection
conditioner: shape(B, conditioner_dim, 1, time_steps)
Outputs:
x: shape(B, num_filters, 1, time_steps), where time_steps = 1
skip: skip connection, same shape as x
"""
residual = x
# add step input and produce step output
x = self.conv.add_input(x)
if conditioner is not None:
cond_bias = self.fc(conditioner)
x += cond_bias
content, gate = fluid.layers.split(x, num_or_sections=2, dim=1)
# Gated Unit.
x = fluid.layers.elementwise_mul(
fluid.layers.sigmoid(gate), fluid.layers.tanh(content))
if skip is None:
skip = x
else:
skip = fluid.layers.scale(skip + x, np.sqrt(0.5))
if self.residual:
x = fluid.layers.scale(residual + x, np.sqrt(0.5))
return x, skip
def Conv2DTranspose(name_scope,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
use_cudnn=True,
act=None,
dtype="float32"):
val = 1.0 / (filter_size[0] * filter_size[1])
weight_init = fluid.initializer.ConstantInitializer(val)
weight_attr = fluid.ParamAttr(initializer=weight_init)
layer = weight_norm.Conv2DTranspose(
name_scope,
num_filters,
filter_size=filter_size,
padding=padding,
stride=stride,
dilation=dilation,
param_attr=weight_attr,
use_cudnn=use_cudnn,
act=act,
dtype=dtype)
return layer

View File

@ -78,17 +78,15 @@ class ScaledDotProductAttention(dg.Layer):
""" """
# Compute attention score # Compute attention score
attention = layers.matmul( attention = layers.matmul(
query, key, transpose_y=True) #transpose the last dim in y query, key, transpose_y=True, alpha=self.d_key
attention = attention / math.sqrt(self.d_key) **-0.5) #transpose the last dim in y
# Mask key to ignore padding # Mask key to ignore padding
if mask is not None: if mask is not None:
attention = attention * mask
mask = (mask == 0).astype(np.float32) * (-2**32 + 1)
attention = attention + mask attention = attention + mask
attention = layers.softmax(attention) attention = layers.softmax(attention)
attention = layers.dropout(attention, dropout) attention = layers.dropout(
attention, dropout, dropout_implementation='upscale_in_train')
# Mask query to ignore padding # Mask query to ignore padding
if query_mask is not None: if query_mask is not None:
@ -142,17 +140,11 @@ class MultiheadAttention(dg.Layer):
result (Variable), Shape(B, T, C), the result of mutihead attention. result (Variable), Shape(B, T, C), the result of mutihead attention.
attention (Variable), Shape(n_head * B, T, C), the attention of key. attention (Variable), Shape(n_head * B, T, C), the attention of key.
""" """
batch_size = key.shape[0] batch_size = key.shape[0]
seq_len_key = key.shape[1] seq_len_key = key.shape[1]
seq_len_query = query_input.shape[1] seq_len_query = query_input.shape[1]
# repeat masks h times
if query_mask is not None:
query_mask = layers.expand(query_mask,
[self.num_head, 1, seq_len_key])
if mask is not None:
mask = layers.expand(mask, (self.num_head, 1, 1))
# Make multihead attention # Make multihead attention
# key & value.shape = (batch_size, seq_len, feature)(feature = num_head * num_hidden_per_attn) # key & value.shape = (batch_size, seq_len, feature)(feature = num_head * num_hidden_per_attn)
key = layers.reshape( key = layers.reshape(
@ -176,6 +168,18 @@ class MultiheadAttention(dg.Layer):
result, attention = self.scal_attn( result, attention = self.scal_attn(
key, value, query, mask=mask, query_mask=query_mask) key, value, query, mask=mask, query_mask=query_mask)
key = layers.reshape(
layers.transpose(key, [2, 0, 1, 3]), [-1, seq_len_key, self.d_k])
value = layers.reshape(
layers.transpose(value, [2, 0, 1, 3]),
[-1, seq_len_key, self.d_k])
query = layers.reshape(
layers.transpose(query, [2, 0, 1, 3]),
[-1, seq_len_query, self.d_q])
result, attention = self.scal_attn(
key, value, query, mask=mask, query_mask=query_mask)
# concat all multihead result # concat all multihead result
result = layers.reshape( result = layers.reshape(
result, [self.num_head, batch_size, seq_len_query, self.d_q]) result, [self.num_head, batch_size, seq_len_query, self.d_q])
@ -184,7 +188,10 @@ class MultiheadAttention(dg.Layer):
[batch_size, seq_len_query, -1]) [batch_size, seq_len_query, -1])
if self.is_concat: if self.is_concat:
result = layers.concat([query_input, result], axis=-1) result = layers.concat([query_input, result], axis=-1)
result = layers.dropout(self.fc(result), self.dropout) result = layers.dropout(
self.fc(result),
self.dropout,
dropout_implementation='upscale_in_train')
result = result + query_input result = result + query_input
result = self.layer_norm(result) result = self.layer_norm(result)