refactor wavenet
This commit is contained in:
parent
faa725bad9
commit
a012825423
|
@ -0,0 +1,97 @@
|
|||
# Wavenet
|
||||
|
||||
Paddle implementation of wavenet in dynamic graph, a convolutional network based vocoder. Wavenet is proposed in [WaveNet: A Generative Model for Raw Audio](https://arxiv.org/abs/1609.03499), but in thie experiment, the implementation follows the teacher model in [ClariNet: Parallel Wave Generation in End-to-End Text-to-Speech](arxiv.org/abs/1807.07281).
|
||||
|
||||
|
||||
## Dataset
|
||||
|
||||
We experiment with the LJSpeech dataset. Download and unzip [LJSpeech](https://keithito.com/LJ-Speech-Dataset/).
|
||||
|
||||
```bash
|
||||
wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
|
||||
tar xjvf LJSpeech-1.1.tar.bz2
|
||||
```
|
||||
|
||||
## Project Structure
|
||||
|
||||
```text
|
||||
├── data.py data_processing
|
||||
├── configs/ (example) configuration file
|
||||
├── synthesis.py script to synthesize waveform from mel_spectrogram
|
||||
├── train.py script to train a model
|
||||
└── utils.py utility functions
|
||||
```
|
||||
|
||||
## Train
|
||||
|
||||
Train the model using train.py, follow the usage displayed by `python train.py --help`.
|
||||
|
||||
```text
|
||||
usage: train.py [-h] [--data DATA] [--config CONFIG] [--output OUTPUT]
|
||||
[--device DEVICE] [--resume RESUME]
|
||||
|
||||
Train a wavenet model with LJSpeech.
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--data DATA path of the LJspeech dataset.
|
||||
--config CONFIG path of the config file.
|
||||
--output OUTPUT path to save results.
|
||||
--device DEVICE device to use.
|
||||
--resume RESUME checkpoint to resume from.
|
||||
```
|
||||
|
||||
1. `--config` is the configuration file to use. The provided configurations can be used directly. And you can change some values in the configuration file and train the model with a different config.
|
||||
2. `--data` is the path of the LJSpeech dataset, the extracted folder from the downloaded archive (the folder which contains metadata.txt).
|
||||
3. `--resume` is the path of the checkpoint. If it is provided, the model would load the checkpoint before trainig.
|
||||
4. `--output` is the directory to save results, all result are saved in this directory. The structure of the output directory is shown below.
|
||||
|
||||
```text
|
||||
├── checkpoints # checkpoint
|
||||
└── log # tensorboard log
|
||||
```
|
||||
|
||||
5. `--device` is the device (gpu id) to use for training. `-1` means CPU.
|
||||
|
||||
example script:
|
||||
|
||||
```bash
|
||||
python train.py --config=./configs/wavenet_single_gaussian.yaml --data=./LJSpeech-1.1/ --output=experiment --device=0
|
||||
```
|
||||
|
||||
You can monitor training log via tensorboard, using the script below.
|
||||
|
||||
```bash
|
||||
cd experiment/log
|
||||
tensorboard --logdir=.
|
||||
```
|
||||
|
||||
## Synthesis
|
||||
```text
|
||||
usage: synthesis.py [-h] [--data DATA] [--config CONFIG] [--device DEVICE]
|
||||
checkpoint output
|
||||
|
||||
Synthesize valid data from LJspeech with a wavenet model.
|
||||
|
||||
positional arguments:
|
||||
checkpoint checkpoint to load.
|
||||
output path to save results.
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--data DATA path of the LJspeech dataset.
|
||||
--config CONFIG path of the config file.
|
||||
--device DEVICE device to use.
|
||||
```
|
||||
|
||||
1. `--config` is the configuration file to use. You should use the same configuration with which you train you model.
|
||||
2. `--data` is the path of the LJspeech dataset. A dataset is not needed for synthesis, but since the input is mel spectrogram, we need to get mel spectrogram from audio files.
|
||||
3. `checkpoint` is the checkpoint to load.
|
||||
4. `output_path` is the directory to save results. The output path contains the generated audio files (`*.wav`).
|
||||
5. `--device` is the device (gpu id) to use for training. `-1` means CPU.
|
||||
|
||||
example script:
|
||||
|
||||
```bash
|
||||
python synthesis.py --config=./configs/wavenet_single_gaussian.yaml --data=./LJSpeech-1.1/ --device=0 experiment/checkpoints/step_500000 generated
|
||||
```
|
|
@ -0,0 +1,37 @@
|
|||
data:
|
||||
root: "/workspace/datasets/LJSpeech-1.1/"
|
||||
batch_size: 4
|
||||
train_clip_seconds: 0.5
|
||||
sample_rate: 22050
|
||||
hop_length: 256
|
||||
win_length: 1024
|
||||
n_fft: 2048
|
||||
n_mels: 80
|
||||
valid_size: 16
|
||||
|
||||
|
||||
|
||||
model:
|
||||
upsampling_factors: [16, 16]
|
||||
n_loop: 10
|
||||
n_layer: 3
|
||||
filter_size: 2
|
||||
residual_channels: 128
|
||||
loss_type: "mog"
|
||||
output_dim: 30
|
||||
log_scale_min: -9
|
||||
|
||||
train:
|
||||
learning_rate: 0.001
|
||||
anneal_rate: 0.5
|
||||
anneal_interval: 200000
|
||||
gradient_max_norm: 100.0
|
||||
|
||||
checkpoint_interval: 10000
|
||||
snap_interval: 10000
|
||||
eval_interval: 10000
|
||||
|
||||
max_iterations: 200000
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
data:
|
||||
root: "/workspace/datasets/LJSpeech-1.1/"
|
||||
batch_size: 4
|
||||
train_clip_seconds: 0.5
|
||||
sample_rate: 22050
|
||||
hop_length: 256
|
||||
win_length: 1024
|
||||
n_fft: 2048
|
||||
n_mels: 80
|
||||
valid_size: 16
|
||||
|
||||
|
||||
|
||||
model:
|
||||
upsampling_factors: [16, 16]
|
||||
n_loop: 10
|
||||
n_layer: 3
|
||||
filter_size: 2
|
||||
residual_channels: 128
|
||||
loss_type: "mog"
|
||||
output_dim: 3
|
||||
log_scale_min: -9
|
||||
|
||||
train:
|
||||
learning_rate: 0.001
|
||||
anneal_rate: 0.5
|
||||
anneal_interval: 200000
|
||||
gradient_max_norm: 100.0
|
||||
|
||||
checkpoint_interval: 10000
|
||||
snap_interval: 10000
|
||||
eval_interval: 10000
|
||||
|
||||
max_iterations: 200000
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
data:
|
||||
root: "/workspace/datasets/LJSpeech-1.1/"
|
||||
batch_size: 4
|
||||
train_clip_seconds: 0.5
|
||||
sample_rate: 22050
|
||||
hop_length: 256
|
||||
win_length: 1024
|
||||
n_fft: 2048
|
||||
n_mels: 80
|
||||
valid_size: 16
|
||||
|
||||
|
||||
|
||||
model:
|
||||
upsampling_factors: [16, 16]
|
||||
n_loop: 10
|
||||
n_layer: 3
|
||||
filter_size: 2
|
||||
residual_channels: 128
|
||||
loss_type: "softmax"
|
||||
output_dim: 2048
|
||||
log_scale_min: -9
|
||||
|
||||
train:
|
||||
learning_rate: 0.001
|
||||
anneal_rate: 0.5
|
||||
anneal_interval: 200000
|
||||
gradient_max_norm: 100.0
|
||||
|
||||
checkpoint_interval: 10000
|
||||
snap_interval: 10000
|
||||
eval_interval: 10000
|
||||
|
||||
max_iterations: 200000
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,163 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import csv
|
||||
import numpy as np
|
||||
import librosa
|
||||
from pathlib import Path
|
||||
import pandas as pd
|
||||
|
||||
from parakeet.data import batch_spec, batch_wav
|
||||
from parakeet.data import DatasetMixin
|
||||
|
||||
|
||||
class LJSpeechMetaData(DatasetMixin):
|
||||
def __init__(self, root):
|
||||
self.root = Path(root)
|
||||
self._wav_dir = self.root.joinpath("wavs")
|
||||
csv_path = self.root.joinpath("metadata.csv")
|
||||
self._table = pd.read_csv(
|
||||
csv_path,
|
||||
sep="|",
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
names=["fname", "raw_text", "normalized_text"])
|
||||
|
||||
def get_example(self, i):
|
||||
fname, raw_text, normalized_text = self._table.iloc[i]
|
||||
fname = str(self._wav_dir.joinpath(fname + ".wav"))
|
||||
return fname, raw_text, normalized_text
|
||||
|
||||
def __len__(self):
|
||||
return len(self._table)
|
||||
|
||||
|
||||
class Transform(object):
|
||||
def __init__(self, sample_rate, n_fft, win_length, hop_length, n_mels):
|
||||
self.sample_rate = sample_rate
|
||||
self.n_fft = n_fft
|
||||
self.win_length = win_length
|
||||
self.hop_length = hop_length
|
||||
self.n_mels = n_mels
|
||||
|
||||
def __call__(self, example):
|
||||
wav_path, _, _ = example
|
||||
|
||||
sr = self.sample_rate
|
||||
n_fft = self.n_fft
|
||||
win_length = self.win_length
|
||||
hop_length = self.hop_length
|
||||
n_mels = self.n_mels
|
||||
|
||||
wav, loaded_sr = librosa.load(wav_path, sr=None)
|
||||
assert loaded_sr == sr, "sample rate does not match, resampling applied"
|
||||
|
||||
# Pad audio to the right size.
|
||||
frames = int(np.ceil(float(wav.size) / hop_length))
|
||||
fft_padding = (n_fft - hop_length) // 2 # sound
|
||||
desired_length = frames * hop_length + fft_padding * 2
|
||||
pad_amount = (desired_length - wav.size) // 2
|
||||
|
||||
if wav.size % 2 == 0:
|
||||
wav = np.pad(wav, (pad_amount, pad_amount), mode='reflect')
|
||||
else:
|
||||
wav = np.pad(wav, (pad_amount, pad_amount + 1), mode='reflect')
|
||||
|
||||
# Normalize audio.
|
||||
wav = wav / np.abs(wav).max() * 0.999
|
||||
|
||||
# Compute mel-spectrogram.
|
||||
# Turn center to False to prevent internal padding.
|
||||
spectrogram = librosa.core.stft(
|
||||
wav,
|
||||
hop_length=hop_length,
|
||||
win_length=win_length,
|
||||
n_fft=n_fft,
|
||||
center=False)
|
||||
spectrogram_magnitude = np.abs(spectrogram)
|
||||
|
||||
# Compute mel-spectrograms.
|
||||
mel_filter_bank = librosa.filters.mel(sr=sr,
|
||||
n_fft=n_fft,
|
||||
n_mels=n_mels)
|
||||
mel_spectrogram = np.dot(mel_filter_bank, spectrogram_magnitude)
|
||||
mel_spectrogram = mel_spectrogram
|
||||
|
||||
# Rescale mel_spectrogram.
|
||||
min_level, ref_level = 1e-5, 20 # hard code it
|
||||
mel_spectrogram = 20 * np.log10(np.maximum(min_level, mel_spectrogram))
|
||||
mel_spectrogram = mel_spectrogram - ref_level
|
||||
mel_spectrogram = np.clip((mel_spectrogram + 100) / 100, 0, 1)
|
||||
|
||||
# Extract the center of audio that corresponds to mel spectrograms.
|
||||
audio = wav[fft_padding:-fft_padding]
|
||||
assert mel_spectrogram.shape[1] * hop_length == audio.size
|
||||
|
||||
# there is no clipping here
|
||||
return audio, mel_spectrogram
|
||||
|
||||
|
||||
class DataCollector(object):
|
||||
def __init__(self,
|
||||
context_size,
|
||||
sample_rate,
|
||||
hop_length,
|
||||
train_clip_seconds,
|
||||
valid=False):
|
||||
frames_per_second = sample_rate // hop_length
|
||||
train_clip_frames = int(
|
||||
np.ceil(train_clip_seconds * frames_per_second))
|
||||
context_frames = context_size // hop_length
|
||||
self.num_frames = train_clip_frames + context_frames
|
||||
|
||||
self.sample_rate = sample_rate
|
||||
self.hop_length = hop_length
|
||||
self.valid = valid
|
||||
|
||||
def random_crop(self, sample):
|
||||
audio, mel_spectrogram = sample
|
||||
audio_frames = int(audio.size) // self.hop_length
|
||||
max_start_frame = audio_frames - self.num_frames
|
||||
assert max_start_frame >= 0, "audio is too short to be cropped"
|
||||
|
||||
frame_start = np.random.randint(0, max_start_frame)
|
||||
# frame_start = 0 # norandom
|
||||
frame_end = frame_start + self.num_frames
|
||||
|
||||
audio_start = frame_start * self.hop_length
|
||||
audio_end = frame_end * self.hop_length
|
||||
|
||||
audio = audio[audio_start:audio_end]
|
||||
return audio, mel_spectrogram, audio_start
|
||||
|
||||
def __call__(self, samples):
|
||||
# transform them first
|
||||
if self.valid:
|
||||
samples = [(audio, mel_spectrogram, 0)
|
||||
for audio, mel_spectrogram in samples]
|
||||
else:
|
||||
samples = [self.random_crop(sample) for sample in samples]
|
||||
# batch them
|
||||
audios = [sample[0] for sample in samples]
|
||||
audio_starts = [sample[2] for sample in samples]
|
||||
mels = [sample[1] for sample in samples]
|
||||
|
||||
mels = batch_spec(mels)
|
||||
|
||||
if self.valid:
|
||||
audios = batch_wav(audios, dtype=np.float32)
|
||||
else:
|
||||
audios = np.array(audios, dtype=np.float32)
|
||||
audio_starts = np.array(audio_starts, dtype=np.int64)
|
||||
return audios, mels, audio_starts
|
|
@ -0,0 +1,124 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import ruamel.yaml
|
||||
import argparse
|
||||
from tqdm import tqdm
|
||||
from tensorboardX import SummaryWriter
|
||||
from paddle import fluid
|
||||
import paddle.fluid.dygraph as dg
|
||||
|
||||
from parakeet.data import SliceDataset, TransformDataset, DataCargo, SequentialSampler, RandomSampler
|
||||
from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWavenet
|
||||
from parakeet.utils.layer_tools import summary
|
||||
|
||||
from data import LJSpeechMetaData, Transform, DataCollector
|
||||
from utils import make_output_tree, valid_model, eval_model, save_checkpoint
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Synthesize valid data from LJspeech with a wavenet model.")
|
||||
parser.add_argument(
|
||||
"--data", type=str, help="path of the LJspeech dataset.")
|
||||
parser.add_argument("--config", type=str, help="path of the config file.")
|
||||
parser.add_argument(
|
||||
"--device", type=int, default=-1, help="device to use.")
|
||||
|
||||
parser.add_argument("checkpoint", type=str, help="checkpoint to load.")
|
||||
parser.add_argument(
|
||||
"output", type=str, default="experiment", help="path to save results.")
|
||||
|
||||
args = parser.parse_args()
|
||||
with open(args.config, 'rt') as f:
|
||||
config = ruamel.yaml.safe_load(f)
|
||||
|
||||
ljspeech_meta = LJSpeechMetaData(args.data)
|
||||
|
||||
data_config = config["data"]
|
||||
sample_rate = data_config["sample_rate"]
|
||||
n_fft = data_config["n_fft"]
|
||||
win_length = data_config["win_length"]
|
||||
hop_length = data_config["hop_length"]
|
||||
n_mels = data_config["n_mels"]
|
||||
train_clip_seconds = data_config["train_clip_seconds"]
|
||||
transform = Transform(sample_rate, n_fft, win_length, hop_length, n_mels)
|
||||
ljspeech = TransformDataset(ljspeech_meta, transform)
|
||||
|
||||
valid_size = data_config["valid_size"]
|
||||
ljspeech_valid = SliceDataset(ljspeech, 0, valid_size)
|
||||
ljspeech_train = SliceDataset(ljspeech, valid_size, len(ljspeech))
|
||||
|
||||
model_config = config["model"]
|
||||
n_loop = model_config["n_loop"]
|
||||
n_layer = model_config["n_layer"]
|
||||
filter_size = model_config["filter_size"]
|
||||
context_size = 1 + n_layer * sum([filter_size**i for i in range(n_loop)])
|
||||
print("context size is {} samples".format(context_size))
|
||||
train_batch_fn = DataCollector(context_size, sample_rate, hop_length,
|
||||
train_clip_seconds)
|
||||
valid_batch_fn = DataCollector(
|
||||
context_size, sample_rate, hop_length, train_clip_seconds, valid=True)
|
||||
|
||||
batch_size = data_config["batch_size"]
|
||||
train_cargo = DataCargo(
|
||||
ljspeech_train,
|
||||
train_batch_fn,
|
||||
batch_size,
|
||||
sampler=RandomSampler(ljspeech_train))
|
||||
|
||||
# only batch=1 for validation is enabled
|
||||
valid_cargo = DataCargo(
|
||||
ljspeech_valid,
|
||||
valid_batch_fn,
|
||||
batch_size=1,
|
||||
sampler=SequentialSampler(ljspeech_valid))
|
||||
|
||||
make_output_tree(args.output)
|
||||
|
||||
if args.device == -1:
|
||||
place = fluid.CPUPlace()
|
||||
else:
|
||||
place = fluid.CUDAPlace(args.device)
|
||||
|
||||
with dg.guard(place):
|
||||
model_config = config["model"]
|
||||
upsampling_factors = model_config["upsampling_factors"]
|
||||
encoder = UpsampleNet(upsampling_factors)
|
||||
|
||||
n_loop = model_config["n_loop"]
|
||||
n_layer = model_config["n_layer"]
|
||||
residual_channels = model_config["residual_channels"]
|
||||
output_dim = model_config["output_dim"]
|
||||
loss_type = model_config["loss_type"]
|
||||
log_scale_min = model_config["log_scale_min"]
|
||||
decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim,
|
||||
n_mels, filter_size, loss_type, log_scale_min)
|
||||
|
||||
model = ConditionalWavenet(encoder, decoder)
|
||||
summary(model)
|
||||
|
||||
model_dict, _ = dg.load_dygraph(args.checkpoint)
|
||||
print("Loading from {}.pdparams".format(args.checkpoint))
|
||||
model.set_dict(model_dict)
|
||||
|
||||
train_loader = fluid.io.DataLoader.from_generator(
|
||||
capacity=10, return_list=True)
|
||||
train_loader.set_batch_generator(train_cargo, place)
|
||||
|
||||
valid_loader = fluid.io.DataLoader.from_generator(
|
||||
capacity=10, return_list=True)
|
||||
valid_loader.set_batch_generator(valid_cargo, place)
|
||||
|
||||
eval_model(model, valid_loader, args.output, sample_rate)
|
|
@ -0,0 +1,181 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import ruamel.yaml
|
||||
import argparse
|
||||
from tqdm import tqdm
|
||||
from tensorboardX import SummaryWriter
|
||||
from paddle import fluid
|
||||
import paddle.fluid.dygraph as dg
|
||||
|
||||
from parakeet.data import SliceDataset, TransformDataset, DataCargo, SequentialSampler, RandomSampler
|
||||
from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWavenet
|
||||
from parakeet.utils.layer_tools import summary
|
||||
|
||||
from data import LJSpeechMetaData, Transform, DataCollector
|
||||
from utils import make_output_tree, valid_model, save_checkpoint
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Train a wavenet model with LJSpeech.")
|
||||
parser.add_argument(
|
||||
"--data", type=str, help="path of the LJspeech dataset.")
|
||||
parser.add_argument("--config", type=str, help="path of the config file.")
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
type=str,
|
||||
default="experiment",
|
||||
help="path to save results.")
|
||||
parser.add_argument(
|
||||
"--device", type=int, default=-1, help="device to use.")
|
||||
parser.add_argument(
|
||||
"--resume", type=str, help="checkpoint to resume from.")
|
||||
|
||||
args = parser.parse_args()
|
||||
with open(args.config, 'rt') as f:
|
||||
config = ruamel.yaml.safe_load(f)
|
||||
|
||||
ljspeech_meta = LJSpeechMetaData(args.data)
|
||||
|
||||
data_config = config["data"]
|
||||
sample_rate = data_config["sample_rate"]
|
||||
n_fft = data_config["n_fft"]
|
||||
win_length = data_config["win_length"]
|
||||
hop_length = data_config["hop_length"]
|
||||
n_mels = data_config["n_mels"]
|
||||
train_clip_seconds = data_config["train_clip_seconds"]
|
||||
transform = Transform(sample_rate, n_fft, win_length, hop_length, n_mels)
|
||||
ljspeech = TransformDataset(ljspeech_meta, transform)
|
||||
|
||||
valid_size = data_config["valid_size"]
|
||||
ljspeech_valid = SliceDataset(ljspeech, 0, valid_size)
|
||||
ljspeech_train = SliceDataset(ljspeech, valid_size, len(ljspeech))
|
||||
|
||||
model_config = config["model"]
|
||||
n_loop = model_config["n_loop"]
|
||||
n_layer = model_config["n_layer"]
|
||||
filter_size = model_config["filter_size"]
|
||||
context_size = 1 + n_layer * sum([filter_size**i for i in range(n_loop)])
|
||||
print("context size is {} samples".format(context_size))
|
||||
train_batch_fn = DataCollector(context_size, sample_rate, hop_length,
|
||||
train_clip_seconds)
|
||||
valid_batch_fn = DataCollector(
|
||||
context_size, sample_rate, hop_length, train_clip_seconds, valid=True)
|
||||
|
||||
batch_size = data_config["batch_size"]
|
||||
train_cargo = DataCargo(
|
||||
ljspeech_train,
|
||||
train_batch_fn,
|
||||
batch_size,
|
||||
sampler=RandomSampler(ljspeech_train))
|
||||
|
||||
# only batch=1 for validation is enabled
|
||||
valid_cargo = DataCargo(
|
||||
ljspeech_valid,
|
||||
valid_batch_fn,
|
||||
batch_size=1,
|
||||
sampler=SequentialSampler(ljspeech_valid))
|
||||
|
||||
make_output_tree(args.output)
|
||||
|
||||
if args.device == -1:
|
||||
place = fluid.CPUPlace()
|
||||
else:
|
||||
place = fluid.CUDAPlace(args.device)
|
||||
|
||||
with dg.guard(place):
|
||||
model_config = config["model"]
|
||||
upsampling_factors = model_config["upsampling_factors"]
|
||||
encoder = UpsampleNet(upsampling_factors)
|
||||
|
||||
n_loop = model_config["n_loop"]
|
||||
n_layer = model_config["n_layer"]
|
||||
residual_channels = model_config["residual_channels"]
|
||||
output_dim = model_config["output_dim"]
|
||||
loss_type = model_config["loss_type"]
|
||||
log_scale_min = model_config["log_scale_min"]
|
||||
decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim,
|
||||
n_mels, filter_size, loss_type, log_scale_min)
|
||||
|
||||
model = ConditionalWavenet(encoder, decoder)
|
||||
summary(model)
|
||||
|
||||
train_config = config["train"]
|
||||
learning_rate = train_config["learning_rate"]
|
||||
anneal_rate = train_config["anneal_rate"]
|
||||
anneal_interval = train_config["anneal_interval"]
|
||||
lr_scheduler = dg.ExponentialDecay(
|
||||
learning_rate, anneal_interval, anneal_rate, staircase=True)
|
||||
optim = fluid.optimizer.Adam(
|
||||
lr_scheduler, parameter_list=model.parameters())
|
||||
|
||||
gradiant_max_norm = train_config["gradient_max_norm"]
|
||||
clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(
|
||||
gradiant_max_norm)
|
||||
|
||||
if args.resume:
|
||||
model_dict, optim_dict = dg.load_dygraph(args.resume)
|
||||
print("Loading from {}.pdparams".format(args.resume))
|
||||
model.set_dict(model_dict)
|
||||
if optim_dict:
|
||||
optim.set_dict(optim_dict)
|
||||
print("Loading from {}.pdopt".format(args.resume))
|
||||
|
||||
train_loader = fluid.io.DataLoader.from_generator(
|
||||
capacity=10, return_list=True)
|
||||
train_loader.set_batch_generator(train_cargo, place)
|
||||
|
||||
valid_loader = fluid.io.DataLoader.from_generator(
|
||||
capacity=10, return_list=True)
|
||||
valid_loader.set_batch_generator(valid_cargo, place)
|
||||
|
||||
max_iterations = train_config["max_iterations"]
|
||||
checkpoint_interval = train_config["checkpoint_interval"]
|
||||
snap_interval = train_config["snap_interval"]
|
||||
eval_interval = train_config["eval_interval"]
|
||||
checkpoint_dir = os.path.join(args.output, "checkpoints")
|
||||
log_dir = os.path.join(args.output, "log")
|
||||
writer = SummaryWriter(log_dir)
|
||||
|
||||
global_step = 1
|
||||
while global_step <= max_iterations:
|
||||
epoch_loss = 0.
|
||||
for i, batch in tqdm(enumerate(train_loader)):
|
||||
audio_clips, mel_specs, audio_starts = batch
|
||||
|
||||
model.train()
|
||||
y_var = model(audio_clips, mel_specs, audio_starts)
|
||||
loss_var = model.loss(y_var, audio_clips)
|
||||
loss_var.backward()
|
||||
loss_np = loss_var.numpy()
|
||||
|
||||
epoch_loss += loss_np[0]
|
||||
|
||||
writer.add_scalar("loss", loss_np[0], global_step)
|
||||
writer.add_scalar("learning_rate",
|
||||
optim._learning_rate.step().numpy()[0],
|
||||
global_step)
|
||||
optim.minimize(loss_var, grad_clip=clipper)
|
||||
optim.clear_gradients()
|
||||
print("loss: {:<8.6f}".format(loss_np[0]))
|
||||
|
||||
if global_step % snap_interval == 0:
|
||||
valid_model(model, valid_loader, writer, global_step,
|
||||
sample_rate)
|
||||
|
||||
if global_step % checkpoint_interval == 0:
|
||||
save_checkpoint(model, optim, checkpoint_dir, global_step)
|
||||
|
||||
global_step += 1
|
|
@ -0,0 +1,67 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import paddle.fluid.dygraph as dg
|
||||
|
||||
|
||||
def make_output_tree(output_dir):
|
||||
checkpoint_dir = os.path.join(output_dir, "checkpoints")
|
||||
if not os.path.exists(checkpoint_dir):
|
||||
os.makedirs(checkpoint_dir)
|
||||
|
||||
state_dir = os.path.join(output_dir, "states")
|
||||
if not os.path.exists(state_dir):
|
||||
os.makedirs(state_dir)
|
||||
|
||||
|
||||
def valid_model(model, valid_loader, writer, global_step, sample_rate):
|
||||
loss = []
|
||||
wavs = []
|
||||
model.eval()
|
||||
for i, batch in enumerate(valid_loader):
|
||||
# print("sentence {}".format(i))
|
||||
audio_clips, mel_specs, audio_starts = batch
|
||||
y_var = model(audio_clips, mel_specs, audio_starts)
|
||||
wav_var = model.sample(y_var)
|
||||
loss_var = model.loss(y_var, audio_clips)
|
||||
loss.append(loss_var.numpy()[0])
|
||||
wavs.append(wav_var.numpy()[0])
|
||||
|
||||
average_loss = np.mean(loss)
|
||||
writer.add_scalar("valid_loss", average_loss, global_step)
|
||||
for i, wav in enumerate(wavs):
|
||||
writer.add_audio("valid/sample_{}".format(i), wav, global_step,
|
||||
sample_rate)
|
||||
|
||||
|
||||
def eval_model(model, valid_loader, output_dir, sample_rate):
|
||||
model.eval()
|
||||
for i, batch in enumerate(valid_loader):
|
||||
# print("sentence {}".format(i))
|
||||
path = os.path.join(output_dir, "sentence_{}.wav".format(i))
|
||||
audio_clips, mel_specs, audio_starts = batch
|
||||
wav_var = model.synthesis(mel_specs)
|
||||
wav_np = wav_var.numpy()[0]
|
||||
sf.write(wav_np, path, samplerate=sample_rate)
|
||||
print("generated {}".format(path))
|
||||
|
||||
|
||||
def save_checkpoint(model, optim, checkpoint_dir, global_step):
|
||||
checkpoint_path = os.path.join(checkpoint_dir,
|
||||
"step_{:09d}".format(global_step))
|
||||
dg.save_dygraph(model.state_dict(), checkpoint_path)
|
||||
dg.save_dygraph(optim.state_dict(), checkpoint_path)
|
|
@ -1,97 +0,0 @@
|
|||
# WaveNet with Paddle Fluid
|
||||
|
||||
Paddle fluid implementation of WaveNet, a deep generative model of raw audio waveforms.
|
||||
WaveNet model is originally proposed in [WaveNet: A Generative Model for Raw Audio](https://arxiv.org/abs/1609.03499).
|
||||
Our implementation is based on the WaveNet architecture described in [ClariNet: Parallel Wave Generation in End-to-End Text-to-Speech](https://arxiv.org/abs/1807.07281) and can provide various output distributions, including single Gaussian, mixture of Gaussian, and softmax with linearly quantized channels.
|
||||
|
||||
We implement WaveNet model in paddle fluid with dynamic graph, which is convenient for flexible network architectures.
|
||||
|
||||
## Project Structure
|
||||
```text
|
||||
├── configs # yaml configuration files of preset model hyperparameters
|
||||
├── data.py # dataset and dataloader settings for LJSpeech
|
||||
├── slurm.py # optional slurm helper functions if you use slurm to train model
|
||||
├── synthesis.py # script for speech synthesis
|
||||
├── train.py # script for model training
|
||||
├── utils.py # helper functions for e.g., model checkpointing
|
||||
├── wavenet.py # WaveNet model high level APIs
|
||||
└── wavenet_modules.py # WaveNet model implementation
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
There are many hyperparameters to be tuned depending on the specification of model and dataset you are working on. Hyperparameters that are known to work good for the LJSpeech dataset are provided as yaml files in `./configs/` folder. Specifically, we provide `wavenet_ljspeech_single_gaussian.yaml`, `wavenet_ljspeech_mix_gaussian.yaml`, and `wavenet_ljspeech_softmax.yaml` config files for WaveNet with single Gaussian, 10-component mixture of Gaussians, and softmax (with 2048 linearly quantized channels) output distributions, respectively.
|
||||
|
||||
Note that `train.py` and `synthesis.py` all accept a `--config` parameter. To ensure consistency, you should use the same config yaml file for both training and synthesizing. You can also overwrite these preset hyperparameters with command line by updating parameters after `--config`. For example `--config=${yaml} --batch_size=8 --layers=20` can overwrite the corresponding hyperparameters in the `${yaml}` config file. For more details about these hyperparameters, check `utils.add_config_options_to_parser`.
|
||||
|
||||
Note that you also need to specify some additional parameters for `train.py` and `synthesis.py`, and the details can be found in `train.add_options_to_parser` and `synthesis.add_options_to_parser`, respectively.
|
||||
|
||||
### Dataset
|
||||
|
||||
Download and unzip [LJSpeech](https://keithito.com/LJ-Speech-Dataset/).
|
||||
|
||||
```bash
|
||||
wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
|
||||
tar xjvf LJSpeech-1.1.tar.bz2
|
||||
```
|
||||
|
||||
In this example, assume that the path of unzipped LJSpeech dataset is `./data/LJSpeech-1.1`.
|
||||
|
||||
### Train on single GPU
|
||||
|
||||
```bash
|
||||
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
python -u train.py --config=${yaml} \
|
||||
--root=./data/LJSpeech-1.1 \
|
||||
--name=${ModelName} --batch_size=4 \
|
||||
--parallel=false --use_gpu=true
|
||||
```
|
||||
|
||||
#### Save and Load checkpoints
|
||||
|
||||
Our model will save model parameters as checkpoints in `./runs/wavenet/${ModelName}/checkpoint/` every 10000 iterations by default.
|
||||
The saved checkpoint will have the format of `step-${iteration_number}.pdparams` for model parameters and `step-${iteration_number}.pdopt` for optimizer parameters.
|
||||
|
||||
There are three ways to load a checkpoint and resume training (take an example that you want to load a 500000-iteration checkpoint):
|
||||
1. Use `--checkpoint=./runs/wavenet/${ModelName}/checkpoint/step-500000` to provide a specific path to load. Note that you only need to provide the base name of the parameter file, which is `step-500000`, no extension name `.pdparams` or `.pdopt` is needed.
|
||||
2. Use `--iteration=500000`.
|
||||
3. If you don't specify either `--checkpoint` or `--iteration`, the model will automatically load the latest checkpoint in `./runs/wavenet/${ModelName}/checkpoint`.
|
||||
|
||||
### Train on multiple GPUs
|
||||
|
||||
```bash
|
||||
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
python -u -m paddle.distributed.launch train.py \
|
||||
--config=${yaml} \
|
||||
--root=./data/LJSpeech-1.1 \
|
||||
--name=${ModelName} --parallel=true --use_gpu=true
|
||||
```
|
||||
|
||||
Use `export CUDA_VISIBLE_DEVICES=0,1,2,3` to set the GPUs that you want to use to be visible. Then the `paddle.distributed.launch` module will use these visible GPUs to do data parallel training in multiprocessing mode.
|
||||
|
||||
### Monitor with Tensorboard
|
||||
|
||||
By default, the logs are saved in `./runs/wavenet/${ModelName}/logs/`. You can monitor logs by tensorboard.
|
||||
|
||||
```bash
|
||||
tensorboard --logdir=${log_dir} --port=8888
|
||||
```
|
||||
|
||||
### Synthesize from a checkpoint
|
||||
|
||||
Check the [Save and load checkpoint](#save-and-load-checkpoints) section on how to load a specific checkpoint.
|
||||
The following example will automatically load the latest checkpoint:
|
||||
|
||||
```bash
|
||||
export PYTHONPATH="${PYTHONPATH}:${PWD}/../../.."
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
python -u synthesis.py --config=${yaml} \
|
||||
--root=./data/LJSpeech-1.1 \
|
||||
--name=${ModelName} --use_gpu=true \
|
||||
--output=./syn_audios \
|
||||
--sample=${SAMPLE}
|
||||
```
|
||||
|
||||
In this example, `--output` specifies where to save the synthesized audios and `--sample` specifies which sample in the valid dataset (a split from the whole LJSpeech dataset, by default contains the first 16 audio samples) to synthesize based on the mel-spectrograms computed from the ground truth sample audio, e.g., `--sample=0` means to synthesize the first audio in the valid dataset.
|
|
@ -0,0 +1,16 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .net import *
|
||||
from .wavenet import *
|
|
@ -1,32 +0,0 @@
|
|||
valid_size: 16
|
||||
train_clip_second: 0.5
|
||||
sample_rate: 22050
|
||||
fft_window_shift: 256
|
||||
fft_window_size: 1024
|
||||
fft_size: 2048
|
||||
mel_bands: 80
|
||||
|
||||
seed: 1
|
||||
batch_size: 8
|
||||
test_every: 2000
|
||||
save_every: 10000
|
||||
max_iterations: 2000000
|
||||
|
||||
layers: 30
|
||||
kernel_width: 2
|
||||
dilation_block: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
|
||||
residual_channels: 128
|
||||
skip_channels: 128
|
||||
loss_type: mix-gaussian-pdf
|
||||
num_mixtures: 10
|
||||
log_scale_min: -9.0
|
||||
|
||||
conditioner:
|
||||
filter_sizes: [[32, 3], [32, 3]]
|
||||
upsample_factors: [16, 16]
|
||||
|
||||
learning_rate: 0.001
|
||||
gradient_max_norm: 100.0
|
||||
anneal:
|
||||
every: 200000
|
||||
rate: 0.5
|
|
@ -1,32 +0,0 @@
|
|||
valid_size: 16
|
||||
train_clip_second: 0.5
|
||||
sample_rate: 22050
|
||||
fft_window_shift: 256
|
||||
fft_window_size: 1024
|
||||
fft_size: 2048
|
||||
mel_bands: 80
|
||||
|
||||
seed: 1
|
||||
batch_size: 8
|
||||
test_every: 2000
|
||||
save_every: 10000
|
||||
max_iterations: 2000000
|
||||
|
||||
layers: 30
|
||||
kernel_width: 2
|
||||
dilation_block: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
|
||||
residual_channels: 128
|
||||
skip_channels: 128
|
||||
loss_type: mix-gaussian-pdf
|
||||
num_mixtures: 1
|
||||
log_scale_min: -9.0
|
||||
|
||||
conditioner:
|
||||
filter_sizes: [[32, 3], [32, 3]]
|
||||
upsample_factors: [16, 16]
|
||||
|
||||
learning_rate: 0.001
|
||||
gradient_max_norm: 100.0
|
||||
anneal:
|
||||
every: 200000
|
||||
rate: 0.5
|
|
@ -1,31 +0,0 @@
|
|||
valid_size: 16
|
||||
train_clip_second: 0.5
|
||||
sample_rate: 22050
|
||||
fft_window_shift: 256
|
||||
fft_window_size: 1024
|
||||
fft_size: 2048
|
||||
mel_bands: 80
|
||||
|
||||
seed: 1
|
||||
batch_size: 8
|
||||
test_every: 2000
|
||||
save_every: 10000
|
||||
max_iterations: 2000000
|
||||
|
||||
layers: 30
|
||||
kernel_width: 2
|
||||
dilation_block: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
|
||||
residual_channels: 128
|
||||
skip_channels: 128
|
||||
loss_type: softmax
|
||||
num_channels: 2048
|
||||
|
||||
conditioner:
|
||||
filter_sizes: [[32, 3], [32, 3]]
|
||||
upsample_factors: [16, 16]
|
||||
|
||||
learning_rate: 0.001
|
||||
gradient_max_norm: 100.0
|
||||
anneal:
|
||||
every: 200000
|
||||
rate: 0.5
|
|
@ -1,178 +0,0 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
from paddle import fluid
|
||||
|
||||
import utils
|
||||
from parakeet.datasets import ljspeech
|
||||
from parakeet.data import dataset
|
||||
from parakeet.data.sampler import DistributedSampler, BatchSampler
|
||||
from parakeet.data.datacargo import DataCargo
|
||||
|
||||
|
||||
class Dataset(ljspeech.LJSpeech):
|
||||
def __init__(self, config):
|
||||
super(Dataset, self).__init__(config.root)
|
||||
self.config = config
|
||||
self.fft_window_shift = config.fft_window_shift
|
||||
# Calculate context frames.
|
||||
frames_per_second = config.sample_rate // self.fft_window_shift
|
||||
train_clip_frames = int(
|
||||
np.ceil(config.train_clip_second * frames_per_second))
|
||||
context_frames = config.context_size // self.fft_window_shift
|
||||
self.num_frames = train_clip_frames + context_frames
|
||||
|
||||
def _get_example(self, metadatum):
|
||||
fname, _, _ = metadatum
|
||||
wav_path = self.root.joinpath("wavs", fname + ".wav")
|
||||
|
||||
config = self.config
|
||||
sr = config.sample_rate
|
||||
fft_window_shift = config.fft_window_shift
|
||||
fft_window_size = config.fft_window_size
|
||||
fft_size = config.fft_size
|
||||
|
||||
audio, loaded_sr = librosa.load(wav_path, sr=None)
|
||||
assert loaded_sr == sr
|
||||
|
||||
# Pad audio to the right size.
|
||||
frames = int(np.ceil(float(audio.size) / fft_window_shift))
|
||||
fft_padding = (fft_size - fft_window_shift) // 2
|
||||
desired_length = frames * fft_window_shift + fft_padding * 2
|
||||
pad_amount = (desired_length - audio.size) // 2
|
||||
|
||||
if audio.size % 2 == 0:
|
||||
audio = np.pad(audio, (pad_amount, pad_amount), mode='reflect')
|
||||
else:
|
||||
audio = np.pad(audio, (pad_amount, pad_amount + 1), mode='reflect')
|
||||
|
||||
# Normalize audio.
|
||||
audio = audio / np.abs(audio).max() * 0.999
|
||||
|
||||
# Compute mel-spectrogram.
|
||||
# Turn center to False to prevent internal padding.
|
||||
spectrogram = librosa.core.stft(
|
||||
audio,
|
||||
hop_length=fft_window_shift,
|
||||
win_length=fft_window_size,
|
||||
n_fft=fft_size,
|
||||
center=False)
|
||||
spectrogram_magnitude = np.abs(spectrogram)
|
||||
|
||||
# Compute mel-spectrograms.
|
||||
mel_filter_bank = librosa.filters.mel(sr=sr,
|
||||
n_fft=fft_size,
|
||||
n_mels=config.mel_bands)
|
||||
mel_spectrogram = np.dot(mel_filter_bank, spectrogram_magnitude)
|
||||
mel_spectrogram = mel_spectrogram.T
|
||||
|
||||
# Rescale mel_spectrogram.
|
||||
min_level, ref_level = 1e-5, 20
|
||||
mel_spectrogram = 20 * np.log10(np.maximum(min_level, mel_spectrogram))
|
||||
mel_spectrogram = mel_spectrogram - ref_level
|
||||
mel_spectrogram = np.clip((mel_spectrogram + 100) / 100, 0, 1)
|
||||
|
||||
# Extract the center of audio that corresponds to mel spectrograms.
|
||||
audio = audio[fft_padding:-fft_padding]
|
||||
assert mel_spectrogram.shape[0] * fft_window_shift == audio.size
|
||||
|
||||
return audio, mel_spectrogram
|
||||
|
||||
|
||||
class Subset(dataset.Dataset):
|
||||
def __init__(self, dataset, indices, valid):
|
||||
self.dataset = dataset
|
||||
self.indices = indices
|
||||
self.valid = valid
|
||||
|
||||
def __getitem__(self, idx):
|
||||
fft_window_shift = self.dataset.fft_window_shift
|
||||
num_frames = self.dataset.num_frames
|
||||
audio, mel = self.dataset[self.indices[idx]]
|
||||
|
||||
if self.valid:
|
||||
audio_start = 0
|
||||
else:
|
||||
# Randomly crop context + train_clip_second of audio.
|
||||
audio_frames = int(audio.size) // fft_window_shift
|
||||
max_start_frame = audio_frames - num_frames
|
||||
assert max_start_frame >= 0, "audio {} is too short".format(idx)
|
||||
|
||||
frame_start = random.randint(0, max_start_frame)
|
||||
frame_end = frame_start + num_frames
|
||||
|
||||
audio_start = frame_start * fft_window_shift
|
||||
audio_end = frame_end * fft_window_shift
|
||||
|
||||
audio = audio[audio_start:audio_end]
|
||||
|
||||
return audio, mel, audio_start
|
||||
|
||||
def _batch_examples(self, batch):
|
||||
audios = [sample[0] for sample in batch]
|
||||
audio_starts = [sample[2] for sample in batch]
|
||||
|
||||
# mels shape [num_frames, mel_bands]
|
||||
max_frames = max(sample[1].shape[0] for sample in batch)
|
||||
mels = [utils.pad_to_size(sample[1], max_frames) for sample in batch]
|
||||
|
||||
audios = np.array(audios, dtype=np.float32)
|
||||
mels = np.array(mels, dtype=np.float32)
|
||||
audio_starts = np.array(audio_starts, dtype=np.int32)
|
||||
|
||||
return audios, mels, audio_starts
|
||||
|
||||
def __len__(self):
|
||||
return len(self.indices)
|
||||
|
||||
|
||||
class LJSpeech:
|
||||
def __init__(self, config, nranks, rank):
|
||||
place = fluid.CUDAPlace(rank) if config.use_gpu else fluid.CPUPlace()
|
||||
|
||||
# Whole LJSpeech dataset.
|
||||
ds = Dataset(config)
|
||||
|
||||
# Split into train and valid dataset.
|
||||
indices = list(range(len(ds)))
|
||||
train_indices = indices[config.valid_size:]
|
||||
valid_indices = indices[:config.valid_size]
|
||||
random.shuffle(train_indices)
|
||||
|
||||
# Train dataset.
|
||||
trainset = Subset(ds, train_indices, valid=False)
|
||||
sampler = DistributedSampler(len(trainset), nranks, rank)
|
||||
total_bs = config.batch_size
|
||||
assert total_bs % nranks == 0
|
||||
train_sampler = BatchSampler(
|
||||
sampler, total_bs // nranks, drop_last=True)
|
||||
trainloader = DataCargo(trainset, batch_sampler=train_sampler)
|
||||
|
||||
trainreader = fluid.io.PyReader(capacity=50, return_list=True)
|
||||
trainreader.decorate_batch_generator(trainloader, place)
|
||||
self.trainloader = (data for _ in iter(int, 1)
|
||||
for data in trainreader())
|
||||
|
||||
# Valid dataset.
|
||||
validset = Subset(ds, valid_indices, valid=True)
|
||||
# Currently only support batch_size = 1 for valid loader.
|
||||
validloader = DataCargo(validset, batch_size=1, shuffle=False)
|
||||
|
||||
validreader = fluid.io.PyReader(capacity=20, return_list=True)
|
||||
validreader.decorate_batch_generator(validloader, place)
|
||||
self.validloader = validreader
|
|
@ -0,0 +1,174 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import itertools
|
||||
import numpy as np
|
||||
from scipy import signal
|
||||
from tqdm import trange
|
||||
|
||||
import paddle.fluid.layers as F
|
||||
import paddle.fluid.dygraph as dg
|
||||
import paddle.fluid.initializer as I
|
||||
import paddle.fluid.layers.distributions as D
|
||||
|
||||
from parakeet.modules.weight_norm import Conv2DTranspose
|
||||
from parakeet.models.wavenet.wavenet import WaveNet
|
||||
|
||||
|
||||
def crop(x, audio_start, audio_length):
|
||||
"""Crop mel spectrogram.
|
||||
|
||||
Args:
|
||||
x (Variable): shape(batch_size, channels, time_steps), the condition, upsampled mel spectrogram.
|
||||
audio_start (int): starting point.
|
||||
audio_length (int): length.
|
||||
|
||||
Returns:
|
||||
out: cropped condition.
|
||||
"""
|
||||
|
||||
# crop audio
|
||||
slices = [] # for each example
|
||||
starts = audio_start.numpy()
|
||||
for i in range(x.shape[0]):
|
||||
start = starts[i]
|
||||
end = start + audio_length
|
||||
slice = F.slice(x[i], axes=[1], starts=[start], ends=[end])
|
||||
slices.append(slice)
|
||||
out = F.stack(slices)
|
||||
return out
|
||||
|
||||
|
||||
class UpsampleNet(dg.Layer):
|
||||
"""A upsampling net (bridge net) in clarinet to upsample spectrograms from frame level to sample level.
|
||||
It consists of several(2) layers of transposed_conv2d. in time and frequency.
|
||||
The time dim is dilated hop_length times. The frequency bands retains.
|
||||
"""
|
||||
|
||||
def __init__(self, upscale_factors=[16, 16]):
|
||||
super().__init__()
|
||||
self.upscale_factors = list(upscale_factors)
|
||||
self.upsample_convs = dg.LayerList()
|
||||
for i, factor in enumerate(upscale_factors):
|
||||
self.upsample_convs.append(
|
||||
Conv2DTranspose(
|
||||
1,
|
||||
1,
|
||||
filter_size=(3, 2 * factor),
|
||||
stride=(1, factor),
|
||||
padding=(1, factor // 2)))
|
||||
|
||||
@property
|
||||
def upscale_factor(self):
|
||||
return np.prod(self.upscale_factors)
|
||||
|
||||
def forward(self, x):
|
||||
"""upsample local condition to match time steps of input signals. i.e. upsample mel spectrogram to match time steps for waveform, for each layer of a wavenet.
|
||||
|
||||
Arguments:
|
||||
x {Variable} -- shape(batch_size, frequency, time_steps), local condition
|
||||
|
||||
Returns:
|
||||
Variable -- shape(batch_size, frequency, time_steps * np.prod(upscale_factors)), upsampled condition for each layer.
|
||||
"""
|
||||
x = F.unsqueeze(x, axes=[1])
|
||||
for sublayer in self.upsample_convs:
|
||||
x = F.leaky_relu(sublayer(x), alpha=.4)
|
||||
x = F.squeeze(x, [1])
|
||||
return x
|
||||
|
||||
|
||||
# AutoRegressive Model
|
||||
class ConditionalWavenet(dg.Layer):
|
||||
def __init__(self, encoder: UpsampleNet, decoder: WaveNet):
|
||||
super().__init__()
|
||||
self.encoder = encoder
|
||||
self.decoder = decoder
|
||||
|
||||
def forward(self, audio, mel, audio_start):
|
||||
"""forward
|
||||
|
||||
Arguments:
|
||||
audio {Variable} -- shape(batch_size, time_steps), waveform of 0.5 seconds
|
||||
mel {Variable} -- shape(batch_size, frequency_bands, frames), mel spectrogram of the whole sentence
|
||||
audio_start {Variable} -- shape(batch_size, ), audio start positions
|
||||
|
||||
Returns:
|
||||
Variable -- shape(batch_size, time_steps - 1, output_dim), output distribution parameters
|
||||
"""
|
||||
|
||||
audio_length = audio.shape[1] # audio clip's length
|
||||
condition = self.encoder(mel)
|
||||
condition_slice = crop(condition, audio_start,
|
||||
audio_length) # crop audio
|
||||
|
||||
# shifting 1 step
|
||||
audio = audio[:, :-1]
|
||||
condition_slice = condition_slice[:, :, 1:]
|
||||
|
||||
y = self.decoder(audio, condition_slice)
|
||||
return y
|
||||
|
||||
def loss(self, y, t):
|
||||
"""compute loss
|
||||
|
||||
Arguments:
|
||||
y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution parameters
|
||||
t {Variable} -- shape(batch_size, time_steps), target waveform
|
||||
|
||||
Returns:
|
||||
Variable -- shape(1, ), reduced loss
|
||||
"""
|
||||
t = t[:, 1:]
|
||||
loss = self.decoder.loss(y, t)
|
||||
return loss
|
||||
|
||||
def sample(self, y):
|
||||
"""sample from output distribution
|
||||
|
||||
Arguments:
|
||||
y {Variable} -- shape(batch_size, time_steps, output_dim), output distribution parameters
|
||||
|
||||
Returns:
|
||||
Variable -- shape(batch_size, time_steps) samples
|
||||
"""
|
||||
|
||||
samples = self.decoder.sample(y)
|
||||
return samples
|
||||
|
||||
@dg.no_grad
|
||||
def synthesis(self, mel):
|
||||
"""synthesize waveform from mel spectrogram
|
||||
|
||||
Arguments:
|
||||
mel {Variable} -- shape(batch_size, frequency_bands, frames), mel-spectrogram
|
||||
|
||||
Returns:
|
||||
Variable -- shape(batch_size, time_steps), synthesized waveform.
|
||||
"""
|
||||
|
||||
condition = self.encoder(mel)
|
||||
batch_size, _, time_steps = condition.shape
|
||||
samples = []
|
||||
|
||||
self.decoder.start_sequence()
|
||||
x_t = F.zeros((batch_size, 1), dtype="float32")
|
||||
for i in trange(time_steps):
|
||||
c_t = condition[:, :, i:i + 1]
|
||||
y_t = self.decoder.add_input(x_t, c_t)
|
||||
x_t = self.sample(y_t)
|
||||
samples.append(x_t)
|
||||
|
||||
samples = F.concat(samples, axis=-1)
|
||||
return samples
|
|
@ -1,128 +0,0 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Utility module for restarting training when using SLURM.
|
||||
"""
|
||||
import subprocess
|
||||
import os
|
||||
import sys
|
||||
import shlex
|
||||
import re
|
||||
import time
|
||||
|
||||
|
||||
def job_info():
|
||||
"""Get information about the current job using `scontrol show job`.
|
||||
Returns a dict mapping parameter names (e.g. "UserId", "RunTime", etc) to
|
||||
their values, both as strings.
|
||||
"""
|
||||
job_id = int(os.environ["SLURM_JOB_ID"])
|
||||
|
||||
command = ["scontrol", "show", "job", str(job_id)]
|
||||
output = subprocess.check_output(command).decode("utf-8")
|
||||
|
||||
# Use a regex to extract the parameter names and values
|
||||
pattern = "([A-Za-z/]*)=([^ \t\n]*)"
|
||||
return dict(re.findall(pattern, output))
|
||||
|
||||
|
||||
def parse_hours(text):
|
||||
"""Parse a time format HH or DD-HH into a number of hours."""
|
||||
hour_chunks = text.split("-")
|
||||
if len(hour_chunks) == 1:
|
||||
return int(hour_chunks[0])
|
||||
elif len(hour_chunks) == 2:
|
||||
return 24 * int(hour_chunks[0]) + int(hour_chunks[1])
|
||||
else:
|
||||
raise ValueError("Unexpected hour format (expected HH or "
|
||||
"DD-HH, but got {}).".format(text))
|
||||
|
||||
|
||||
def parse_time(text):
|
||||
"""Convert slurm time to an integer.
|
||||
Expects time to be of the form:
|
||||
"hours:minutes:seconds" or "day-hours:minutes:seconds".
|
||||
"""
|
||||
hours, minutes, seconds = text.split(":")
|
||||
try:
|
||||
return parse_hours(hours) * 3600 + int(minutes) * 60 + int(seconds)
|
||||
except ValueError as e:
|
||||
raise ValueError("Error parsing time {}. Got error {}.".format(text,
|
||||
str(e)))
|
||||
|
||||
|
||||
def restart_command():
|
||||
"""Using the environment and SLURM command, create a command that, when,
|
||||
run, will enqueue a repeat of the current job using `sbatch`.
|
||||
Return the command as a list of strings, suitable for passing to
|
||||
`subprocess.check_call` or similar functions.
|
||||
Returns:
|
||||
resume_command: list<str>, command to run to restart job.
|
||||
end_time: int or None; the time the job will end or None
|
||||
if the job has unlimited runtime.
|
||||
"""
|
||||
# Make sure `RunTime` could be parsed correctly.
|
||||
while job_info()["RunTime"] == "INVALID":
|
||||
time.sleep(1)
|
||||
|
||||
# Get all the necessary information by querying SLURM with this job id
|
||||
info = job_info()
|
||||
|
||||
try:
|
||||
num_cpus = int(info["CPUs/Task"])
|
||||
except KeyError:
|
||||
num_cpus = int(os.environ["SLURM_CPUS_PER_TASK"])
|
||||
|
||||
num_tasks = int(os.environ["SLURM_NTASKS"])
|
||||
nodes = info["NumNodes"]
|
||||
gres, partition = info.get("Gres"), info.get("Partition")
|
||||
stderr, stdout = info.get("StdErr"), info.get("StdOut")
|
||||
job_name = info.get("JobName")
|
||||
command = [
|
||||
"sbatch", "--job-name={}".format(job_name),
|
||||
"--ntasks={}".format(num_tasks)
|
||||
]
|
||||
|
||||
if partition:
|
||||
command.extend(["--partition", partition])
|
||||
|
||||
if gres and gres != "(null)":
|
||||
command.extend(["--gres", gres])
|
||||
num_gpu = int(gres.split(':')[-1])
|
||||
print("number of gpu assigned by slurm is {}".format(num_gpu))
|
||||
|
||||
if stderr:
|
||||
command.extend(["--error", stderr])
|
||||
|
||||
if stdout:
|
||||
command.extend(["--output", stdout])
|
||||
|
||||
python = subprocess.check_output(
|
||||
["/usr/bin/which", "python3"]).decode("utf-8").strip()
|
||||
dist_setting = ['-m', 'paddle.distributed.launch']
|
||||
wrap_cmd = ["srun", python, '-u'] + dist_setting + sys.argv
|
||||
|
||||
command.append("--wrap={}".format(" ".join(
|
||||
shlex.quote(arg) for arg in wrap_cmd)))
|
||||
time_limit_string = info["TimeLimit"]
|
||||
if time_limit_string.lower() == "unlimited":
|
||||
print(
|
||||
"UNLIMITED detected: restart OFF, infinite learning ON.",
|
||||
flush=True)
|
||||
return command, None
|
||||
time_limit = parse_time(time_limit_string)
|
||||
runtime = parse_time(info["RunTime"])
|
||||
end_time = time.time() + time_limit - runtime
|
||||
|
||||
return command, end_time
|
|
@ -1,116 +0,0 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import random
|
||||
from pprint import pprint
|
||||
|
||||
import jsonargparse
|
||||
import numpy as np
|
||||
import paddle.fluid.dygraph as dg
|
||||
from paddle import fluid
|
||||
|
||||
import utils
|
||||
from wavenet import WaveNet
|
||||
|
||||
|
||||
def add_options_to_parser(parser):
|
||||
parser.add_argument(
|
||||
'--model',
|
||||
type=str,
|
||||
default='wavenet',
|
||||
help="general name of the model")
|
||||
parser.add_argument(
|
||||
'--name', type=str, help="specific name of the training model")
|
||||
parser.add_argument(
|
||||
'--root', type=str, help="root path of the LJSpeech dataset")
|
||||
|
||||
parser.add_argument(
|
||||
'--use_gpu',
|
||||
type=bool,
|
||||
default=True,
|
||||
help="option to use gpu training")
|
||||
|
||||
parser.add_argument(
|
||||
'--iteration',
|
||||
type=int,
|
||||
default=None,
|
||||
help=("which iteration of checkpoint to load, "
|
||||
"default to load the latest checkpoint"))
|
||||
parser.add_argument(
|
||||
'--checkpoint',
|
||||
type=str,
|
||||
default=None,
|
||||
help="path of the checkpoint to load")
|
||||
|
||||
parser.add_argument(
|
||||
'--output',
|
||||
type=str,
|
||||
default="./syn_audios",
|
||||
help="path to write synthesized audio files")
|
||||
parser.add_argument(
|
||||
'--sample',
|
||||
type=int,
|
||||
help="which of the valid samples to synthesize audio")
|
||||
|
||||
|
||||
def synthesize(config):
|
||||
pprint(jsonargparse.namespace_to_dict(config))
|
||||
|
||||
# Get checkpoint directory path.
|
||||
run_dir = os.path.join("runs", config.model, config.name)
|
||||
checkpoint_dir = os.path.join(run_dir, "checkpoint")
|
||||
|
||||
# Configurate device.
|
||||
place = fluid.CUDAPlace(0) if config.use_gpu else fluid.CPUPlace()
|
||||
|
||||
with dg.guard(place):
|
||||
# Fix random seed.
|
||||
seed = config.seed
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
fluid.default_startup_program().random_seed = seed
|
||||
fluid.default_main_program().random_seed = seed
|
||||
print("Random Seed: ", seed)
|
||||
|
||||
# Build model.
|
||||
model = WaveNet(config, checkpoint_dir)
|
||||
model.build(training=False)
|
||||
|
||||
# Obtain the current iteration.
|
||||
if config.checkpoint is None:
|
||||
if config.iteration is None:
|
||||
iteration = utils.load_latest_checkpoint(checkpoint_dir)
|
||||
else:
|
||||
iteration = config.iteration
|
||||
else:
|
||||
iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
|
||||
|
||||
# Run model inference.
|
||||
model.infer(iteration)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Create parser.
|
||||
parser = jsonargparse.ArgumentParser(
|
||||
description="Synthesize audio using WaveNet model",
|
||||
formatter_class='default_argparse')
|
||||
add_options_to_parser(parser)
|
||||
utils.add_config_options_to_parser(parser)
|
||||
|
||||
# Parse argument from both command line and yaml config file.
|
||||
# For conflicting updates to the same field,
|
||||
# the preceding update will be overwritten by the following one.
|
||||
config = parser.parse_args()
|
||||
synthesize(config)
|
|
@ -1,171 +0,0 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import random
|
||||
import subprocess
|
||||
import time
|
||||
from pprint import pprint
|
||||
|
||||
import jsonargparse
|
||||
import numpy as np
|
||||
import paddle.fluid.dygraph as dg
|
||||
from paddle import fluid
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
import slurm
|
||||
import utils
|
||||
from wavenet import WaveNet
|
||||
|
||||
MAXIMUM_SAVE_TIME = 10 * 60
|
||||
|
||||
|
||||
def add_options_to_parser(parser):
|
||||
parser.add_argument(
|
||||
'--model',
|
||||
type=str,
|
||||
default='wavenet',
|
||||
help="general name of the model")
|
||||
parser.add_argument(
|
||||
'--name', type=str, help="specific name of the training model")
|
||||
parser.add_argument(
|
||||
'--root', type=str, help="root path of the LJSpeech dataset")
|
||||
|
||||
parser.add_argument(
|
||||
'--parallel',
|
||||
type=bool,
|
||||
default=True,
|
||||
help="option to use data parallel training")
|
||||
parser.add_argument(
|
||||
'--use_gpu',
|
||||
type=bool,
|
||||
default=True,
|
||||
help="option to use gpu training")
|
||||
|
||||
parser.add_argument(
|
||||
'--iteration',
|
||||
type=int,
|
||||
default=None,
|
||||
help=("which iteration of checkpoint to load, "
|
||||
"default to load the latest checkpoint"))
|
||||
parser.add_argument(
|
||||
'--checkpoint',
|
||||
type=str,
|
||||
default=None,
|
||||
help="path of the checkpoint to load")
|
||||
parser.add_argument(
|
||||
'--slurm',
|
||||
type=bool,
|
||||
default=False,
|
||||
help="whether you are using slurm to submit training jobs")
|
||||
|
||||
|
||||
def train(config):
|
||||
use_gpu = config.use_gpu
|
||||
parallel = config.parallel if use_gpu else False
|
||||
|
||||
# Get the rank of the current training process.
|
||||
rank = dg.parallel.Env().local_rank if parallel else 0
|
||||
nranks = dg.parallel.Env().nranks if parallel else 1
|
||||
|
||||
if rank == 0:
|
||||
# Print the whole config setting.
|
||||
pprint(jsonargparse.namespace_to_dict(config))
|
||||
|
||||
# Make checkpoint directory.
|
||||
run_dir = os.path.join("runs", config.model, config.name)
|
||||
checkpoint_dir = os.path.join(run_dir, "checkpoint")
|
||||
os.makedirs(checkpoint_dir, exist_ok=True)
|
||||
|
||||
# Create tensorboard logger.
|
||||
tb = SummaryWriter(os.path.join(run_dir, "logs")) \
|
||||
if rank == 0 else None
|
||||
|
||||
# Configurate device
|
||||
place = fluid.CUDAPlace(rank) if use_gpu else fluid.CPUPlace()
|
||||
|
||||
with dg.guard(place):
|
||||
# Fix random seed.
|
||||
seed = config.seed
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
fluid.default_startup_program().random_seed = seed
|
||||
fluid.default_main_program().random_seed = seed
|
||||
print("Random Seed: ", seed)
|
||||
|
||||
# Build model.
|
||||
model = WaveNet(config, checkpoint_dir, parallel, rank, nranks, tb)
|
||||
model.build()
|
||||
|
||||
# Obtain the current iteration.
|
||||
if config.checkpoint is None:
|
||||
if config.iteration is None:
|
||||
iteration = utils.load_latest_checkpoint(checkpoint_dir, rank)
|
||||
else:
|
||||
iteration = config.iteration
|
||||
else:
|
||||
iteration = int(config.checkpoint.split('/')[-1].split('-')[-1])
|
||||
|
||||
# Get restart command if using slurm.
|
||||
if config.slurm:
|
||||
resume_command, death_time = slurm.restart_command()
|
||||
if rank == 0:
|
||||
print("Restart command:", " ".join(resume_command))
|
||||
done = False
|
||||
|
||||
while iteration < config.max_iterations:
|
||||
# Run one single training step.
|
||||
model.train_step(iteration)
|
||||
|
||||
iteration += 1
|
||||
|
||||
if iteration % config.test_every == 0:
|
||||
# Run validation step.
|
||||
model.valid_step(iteration)
|
||||
|
||||
# Check whether reaching the time limit.
|
||||
if config.slurm:
|
||||
done = (death_time is not None and
|
||||
death_time - time.time() < MAXIMUM_SAVE_TIME)
|
||||
|
||||
if rank == 0 and done:
|
||||
print("Saving progress before exiting.")
|
||||
model.save(iteration)
|
||||
|
||||
print("Running restart command:", " ".join(resume_command))
|
||||
# Submit restart command.
|
||||
subprocess.check_call(resume_command)
|
||||
break
|
||||
|
||||
if rank == 0 and iteration % config.save_every == 0:
|
||||
# Save parameters.
|
||||
model.save(iteration)
|
||||
|
||||
# Close TensorBoard.
|
||||
if rank == 0:
|
||||
tb.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Create parser.
|
||||
parser = jsonargparse.ArgumentParser(
|
||||
description="Train WaveNet model", formatter_class='default_argparse')
|
||||
add_options_to_parser(parser)
|
||||
utils.add_config_options_to_parser(parser)
|
||||
|
||||
# Parse argument from both command line and yaml config file.
|
||||
# For conflicting updates to the same field,
|
||||
# the preceding update will be overwritten by the following one.
|
||||
config = parser.parse_args()
|
||||
train(config)
|
|
@ -1,186 +0,0 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import itertools
|
||||
import os
|
||||
import time
|
||||
|
||||
import jsonargparse
|
||||
import numpy as np
|
||||
import paddle.fluid.dygraph as dg
|
||||
|
||||
|
||||
def add_config_options_to_parser(parser):
|
||||
parser.add_argument(
|
||||
'--valid_size', type=int, help="size of the valid dataset")
|
||||
parser.add_argument(
|
||||
'--train_clip_second',
|
||||
type=float,
|
||||
help="the length of audio clip for training")
|
||||
parser.add_argument(
|
||||
'--sample_rate', type=int, help="sampling rate of audio data file")
|
||||
parser.add_argument(
|
||||
'--fft_window_shift',
|
||||
type=int,
|
||||
help="the shift of fft window for each frame")
|
||||
parser.add_argument(
|
||||
'--fft_window_size',
|
||||
type=int,
|
||||
help="the size of fft window for each frame")
|
||||
parser.add_argument(
|
||||
'--fft_size', type=int, help="the size of fft filter on each frame")
|
||||
parser.add_argument(
|
||||
'--mel_bands',
|
||||
type=int,
|
||||
help="the number of mel bands when calculating mel spectrograms")
|
||||
|
||||
parser.add_argument(
|
||||
'--seed', type=int, help="seed of random initialization for the model")
|
||||
parser.add_argument(
|
||||
'--batch_size', type=int, help="batch size for training")
|
||||
parser.add_argument(
|
||||
'--test_every', type=int, help="test interval during training")
|
||||
parser.add_argument(
|
||||
'--save_every',
|
||||
type=int,
|
||||
help="checkpointing interval during training")
|
||||
parser.add_argument(
|
||||
'--max_iterations', type=int, help="maximum training iterations")
|
||||
|
||||
parser.add_argument(
|
||||
'--layers', type=int, help="number of dilated convolution layers")
|
||||
parser.add_argument(
|
||||
'--kernel_width', type=int, help="dilated convolution kernel width")
|
||||
parser.add_argument(
|
||||
'--dilation_block', type=list, help="dilated convolution kernel width")
|
||||
parser.add_argument('--residual_channels', type=int)
|
||||
parser.add_argument('--skip_channels', type=int)
|
||||
parser.add_argument(
|
||||
'--loss_type', type=str, help="mix-gaussian-pdf or softmax")
|
||||
parser.add_argument(
|
||||
'--num_channels',
|
||||
type=int,
|
||||
default=None,
|
||||
help="number of channels for softmax output")
|
||||
parser.add_argument(
|
||||
'--num_mixtures',
|
||||
type=int,
|
||||
default=None,
|
||||
help="number of gaussian mixtures for gaussian output")
|
||||
parser.add_argument(
|
||||
'--log_scale_min',
|
||||
type=float,
|
||||
default=None,
|
||||
help="minimum clip value of log variance of gaussian output")
|
||||
|
||||
parser.add_argument(
|
||||
'--conditioner.filter_sizes',
|
||||
type=list,
|
||||
help="conv2d tranpose op filter sizes for building conditioner")
|
||||
parser.add_argument(
|
||||
'--conditioner.upsample_factors',
|
||||
type=list,
|
||||
help="list of upsample factors for building conditioner")
|
||||
|
||||
parser.add_argument('--learning_rate', type=float)
|
||||
parser.add_argument('--gradient_max_norm', type=float)
|
||||
parser.add_argument(
|
||||
'--anneal.every',
|
||||
type=int,
|
||||
help="step interval for annealing learning rate")
|
||||
parser.add_argument('--anneal.rate', type=float)
|
||||
|
||||
parser.add_argument('--config', action=jsonargparse.ActionConfigFile)
|
||||
|
||||
|
||||
def pad_to_size(array, length, pad_with=0.0):
|
||||
"""
|
||||
Pad an array on the first (length) axis to a given length.
|
||||
"""
|
||||
padding = length - array.shape[0]
|
||||
assert padding >= 0, "Padding required was less than zero"
|
||||
|
||||
paddings = [(0, 0)] * len(array.shape)
|
||||
paddings[0] = (0, padding)
|
||||
|
||||
return np.pad(array, paddings, mode='constant', constant_values=pad_with)
|
||||
|
||||
|
||||
def calculate_context_size(config):
|
||||
dilations = list(
|
||||
itertools.islice(
|
||||
itertools.cycle(config.dilation_block), config.layers))
|
||||
config.context_size = sum(dilations) + 1
|
||||
print("Context size is", config.context_size)
|
||||
|
||||
|
||||
def load_latest_checkpoint(checkpoint_dir, rank=0):
|
||||
checkpoint_path = os.path.join(checkpoint_dir, "checkpoint")
|
||||
# Create checkpoint index file if not exist.
|
||||
if (not os.path.isfile(checkpoint_path)) and rank == 0:
|
||||
with open(checkpoint_path, "w") as handle:
|
||||
handle.write("model_checkpoint_path: step-0")
|
||||
|
||||
# Make sure that other process waits until checkpoint file is created
|
||||
# by process 0.
|
||||
while not os.path.isfile(checkpoint_path):
|
||||
time.sleep(1)
|
||||
|
||||
# Fetch the latest checkpoint index.
|
||||
with open(checkpoint_path, "r") as handle:
|
||||
latest_checkpoint = handle.readline().split()[-1]
|
||||
iteration = int(latest_checkpoint.split("-")[-1])
|
||||
|
||||
return iteration
|
||||
|
||||
|
||||
def save_latest_checkpoint(checkpoint_dir, iteration):
|
||||
checkpoint_path = os.path.join(checkpoint_dir, "checkpoint")
|
||||
# Update the latest checkpoint index.
|
||||
with open(checkpoint_path, "w") as handle:
|
||||
handle.write("model_checkpoint_path: step-{}".format(iteration))
|
||||
|
||||
|
||||
def load_parameters(checkpoint_dir,
|
||||
rank,
|
||||
model,
|
||||
optimizer=None,
|
||||
iteration=None,
|
||||
file_path=None):
|
||||
if file_path is None:
|
||||
if iteration is None:
|
||||
iteration = load_latest_checkpoint(checkpoint_dir, rank)
|
||||
if iteration == 0:
|
||||
return
|
||||
file_path = "{}/step-{}".format(checkpoint_dir, iteration)
|
||||
|
||||
model_dict, optimizer_dict = dg.load_dygraph(file_path)
|
||||
model.set_dict(model_dict)
|
||||
print("[checkpoint] Rank {}: loaded model from {}".format(rank, file_path))
|
||||
if optimizer and optimizer_dict:
|
||||
optimizer.set_dict(optimizer_dict)
|
||||
print("[checkpoint] Rank {}: loaded optimizer state from {}".format(
|
||||
rank, file_path))
|
||||
|
||||
|
||||
def save_latest_parameters(checkpoint_dir, iteration, model, optimizer=None):
|
||||
file_path = "{}/step-{}".format(checkpoint_dir, iteration)
|
||||
model_dict = model.state_dict()
|
||||
dg.save_dygraph(model_dict, file_path)
|
||||
print("[checkpoint] Saved model to {}".format(file_path))
|
||||
|
||||
if optimizer:
|
||||
opt_dict = optimizer.state_dict()
|
||||
dg.save_dygraph(opt_dict, file_path)
|
||||
print("[checkpoint] Saved optimzier state to {}".format(file_path))
|
|
@ -12,197 +12,425 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import itertools
|
||||
import os
|
||||
import math
|
||||
import time
|
||||
|
||||
import librosa
|
||||
import itertools
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid.layers as F
|
||||
import paddle.fluid.dygraph as dg
|
||||
from paddle import fluid
|
||||
import paddle.fluid.initializer as I
|
||||
import paddle.fluid.layers.distributions as D
|
||||
|
||||
import utils
|
||||
from data import LJSpeech
|
||||
from wavenet_modules import WaveNetModule
|
||||
from parakeet.modules.weight_norm import Linear, Conv1D, Conv1DCell, Conv2DTranspose
|
||||
|
||||
|
||||
class WaveNet():
|
||||
def __init__(self,
|
||||
config,
|
||||
checkpoint_dir,
|
||||
parallel=False,
|
||||
rank=0,
|
||||
nranks=1,
|
||||
tb_logger=None):
|
||||
# Process config to calculate the context size
|
||||
dilations = list(
|
||||
itertools.islice(
|
||||
itertools.cycle(config.dilation_block), config.layers))
|
||||
config.context_size = sum(dilations) + 1
|
||||
self.config = config
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
self.parallel = parallel
|
||||
self.rank = rank
|
||||
self.nranks = nranks
|
||||
self.tb_logger = tb_logger
|
||||
# for wavenet with softmax loss
|
||||
def quantize(values, n_bands):
|
||||
quantized = F.cast((values + 1.0) / 2.0 * n_bands, "int64")
|
||||
return quantized
|
||||
|
||||
def build(self, training=True):
|
||||
config = self.config
|
||||
dataset = LJSpeech(config, self.nranks, self.rank)
|
||||
self.trainloader = dataset.trainloader
|
||||
self.validloader = dataset.validloader
|
||||
|
||||
wavenet = WaveNetModule("wavenet", config, self.rank)
|
||||
def dequantize(quantized, n_bands):
|
||||
value = (F.cast(quantized, "float32") + 0.5) * (2.0 / n_bands) - 1.0
|
||||
return value
|
||||
|
||||
# Dry run once to create and initalize all necessary parameters.
|
||||
audio = dg.to_variable(np.random.randn(1, 20000).astype(np.float32))
|
||||
mel = dg.to_variable(
|
||||
np.random.randn(1, 100, self.config.mel_bands).astype(np.float32))
|
||||
audio_start = dg.to_variable(np.array([0], dtype=np.int32))
|
||||
wavenet(audio, mel, audio_start)
|
||||
|
||||
if training:
|
||||
# Create Learning rate scheduler.
|
||||
lr_scheduler = dg.ExponentialDecay(
|
||||
learning_rate=config.learning_rate,
|
||||
decay_steps=config.anneal.every,
|
||||
decay_rate=config.anneal.rate,
|
||||
staircase=True)
|
||||
class ResidualBlock(dg.Layer):
|
||||
def __init__(self, residual_channels, condition_dim, filter_size,
|
||||
dilation):
|
||||
super().__init__()
|
||||
dilated_channels = 2 * residual_channels
|
||||
# following clarinet's implementation, we do not have parametric residual
|
||||
# & skip connection.
|
||||
|
||||
optimizer = fluid.optimizer.AdamOptimizer(
|
||||
learning_rate=lr_scheduler)
|
||||
std = np.sqrt(1 / (filter_size * residual_channels))
|
||||
self.conv = Conv1DCell(
|
||||
residual_channels,
|
||||
dilated_channels,
|
||||
filter_size,
|
||||
dilation=dilation,
|
||||
causal=True,
|
||||
param_attr=I.Normal(scale=std))
|
||||
|
||||
clipper = fluid.dygraph_grad_clip.GradClipByGlobalNorm(
|
||||
config.gradient_max_norm)
|
||||
std = np.sqrt(1 / condition_dim)
|
||||
self.condition_proj = Conv1D(
|
||||
condition_dim, dilated_channels, 1, param_attr=I.Normal(scale=std))
|
||||
|
||||
# Load parameters.
|
||||
utils.load_parameters(
|
||||
self.checkpoint_dir,
|
||||
self.rank,
|
||||
wavenet,
|
||||
optimizer,
|
||||
iteration=config.iteration,
|
||||
file_path=config.checkpoint)
|
||||
print("Rank {}: checkpoint loaded.".format(self.rank))
|
||||
self.filter_size = filter_size
|
||||
self.dilation = dilation
|
||||
self.dilated_channels = dilated_channels
|
||||
self.residual_channels = residual_channels
|
||||
self.condition_dim = condition_dim
|
||||
|
||||
# Data parallelism.
|
||||
if self.parallel:
|
||||
strategy = dg.parallel.prepare_context()
|
||||
wavenet = dg.parallel.DataParallel(wavenet, strategy)
|
||||
def forward(self, x, condition=None):
|
||||
"""Conv1D gated tanh Block
|
||||
|
||||
self.wavenet = wavenet
|
||||
self.optimizer = optimizer
|
||||
self.clipper = clipper
|
||||
Arguments:
|
||||
x {Variable} -- shape(batch_size, residual_channels, time_steps), the input.
|
||||
|
||||
Keyword Arguments:
|
||||
condition {Variable} -- shape(batch_size, condition_dim, time_steps), upsampled local condition, it has the shape time steps as the input x. (default: {None})
|
||||
|
||||
Returns:
|
||||
Variable -- shape(batch_size, residual_channels, time_steps), the output which is used as the input of the next layer.
|
||||
Variable -- shape(batch_size, residual_channels, time_steps), the output which is stacked alongside with other layers' as the output of wavenet.
|
||||
"""
|
||||
time_steps = x.shape[-1]
|
||||
h = x
|
||||
|
||||
# dilated conv
|
||||
h = self.conv(h)
|
||||
if h.shape[-1] != time_steps:
|
||||
h = h[:, :, :time_steps]
|
||||
|
||||
# condition
|
||||
if condition:
|
||||
h += self.condition_proj(condition)
|
||||
|
||||
# gated tanh
|
||||
content, gate = F.split(h, 2, dim=1)
|
||||
z = F.sigmoid(gate) * F.tanh(content)
|
||||
|
||||
# projection
|
||||
residual = F.scale(z + x, math.sqrt(.5))
|
||||
skip_connection = z
|
||||
return residual, skip_connection
|
||||
|
||||
def start_sequence(self):
|
||||
self.conv.start_sequence()
|
||||
|
||||
def add_input(self, x, condition=None):
|
||||
"""add a step input.
|
||||
|
||||
Arguments:
|
||||
x {Variable} -- shape(batch_size, in_channels, time_steps=1), step input
|
||||
|
||||
Keyword Arguments:
|
||||
condition {Variable} -- shape(batch_size, condition_dim, time_steps=1) (default: {None})
|
||||
|
||||
Returns:
|
||||
Variable -- shape(batch_size, in_channels, time_steps=1), residual connection, which is the input for the next layer
|
||||
Variable -- shape(batch_size, in_channels, time_steps=1), skip connection
|
||||
"""
|
||||
h = x
|
||||
|
||||
# dilated conv
|
||||
h = self.conv.add_input(h)
|
||||
|
||||
# condition
|
||||
if condition is not None:
|
||||
h += self.condition_proj(condition)
|
||||
|
||||
# gated tanh
|
||||
content, gate = F.split(h, 2, dim=1)
|
||||
z = F.sigmoid(gate) * F.tanh(content)
|
||||
|
||||
# projection
|
||||
residual = F.scale(z + x, np.sqrt(0.5))
|
||||
skip_connection = z
|
||||
return residual, skip_connection
|
||||
|
||||
|
||||
class ResidualNet(dg.Layer):
|
||||
def __init__(self, n_loop, n_layer, residual_channels, condition_dim,
|
||||
filter_size):
|
||||
super().__init__()
|
||||
# double the dilation at each layer in a loop(n_loop layers)
|
||||
dilations = [2**i for i in range(n_loop)] * n_layer
|
||||
self.context_size = 1 + sum(dilations)
|
||||
self.residual_blocks = dg.LayerList([
|
||||
ResidualBlock(residual_channels, condition_dim, filter_size,
|
||||
dilation) for dilation in dilations
|
||||
])
|
||||
|
||||
def forward(self, x, condition=None):
|
||||
"""n_layer layers of n_loop Residual Blocks.
|
||||
|
||||
Arguments:
|
||||
x {Variable} -- shape(batch_size, residual_channels, time_steps), input of the residual net.
|
||||
|
||||
Keyword Arguments:
|
||||
condition {Variable} -- shape(batch_size, condition_dim, time_steps), upsampled conditions, which has the same time steps as the input. (default: {None})
|
||||
|
||||
Returns:
|
||||
Variable -- shape(batch_size, skip_channels, time_steps), output of the residual net.
|
||||
"""
|
||||
|
||||
#before_resnet = time.time()
|
||||
for i, func in enumerate(self.residual_blocks):
|
||||
x, skip = func(x, condition)
|
||||
if i == 0:
|
||||
skip_connections = skip
|
||||
else:
|
||||
# Load parameters.
|
||||
utils.load_parameters(
|
||||
self.checkpoint_dir,
|
||||
self.rank,
|
||||
wavenet,
|
||||
iteration=config.iteration,
|
||||
file_path=config.checkpoint)
|
||||
print("Rank {}: checkpoint loaded.".format(self.rank))
|
||||
skip_connections = F.scale(skip_connections + skip,
|
||||
np.sqrt(0.5))
|
||||
#print("resnet: ", time.time() - before_resnet)
|
||||
return skip_connections
|
||||
|
||||
self.wavenet = wavenet
|
||||
def start_sequence(self):
|
||||
for block in self.residual_blocks:
|
||||
block.start_sequence()
|
||||
|
||||
def train_step(self, iteration):
|
||||
self.wavenet.train()
|
||||
def add_input(self, x, condition=None):
|
||||
"""add step input and return step output.
|
||||
|
||||
start_time = time.time()
|
||||
audios, mels, audio_starts = next(self.trainloader)
|
||||
load_time = time.time()
|
||||
Arguments:
|
||||
x {Variable} -- shape(batch_size, residual_channels, time_steps=1), step input.
|
||||
|
||||
loss, _ = self.wavenet(audios, mels, audio_starts)
|
||||
Keyword Arguments:
|
||||
condition {Variable} -- shape(batch_size, condition_dim, time_steps=1), step condition (default: {None})
|
||||
|
||||
if self.parallel:
|
||||
# loss = loss / num_trainers
|
||||
loss = self.wavenet.scale_loss(loss)
|
||||
loss.backward()
|
||||
self.wavenet.apply_collective_grads()
|
||||
Returns:
|
||||
Variable -- shape(batch_size, skip_channels, time_steps=1), step output, parameters of the output distribution.
|
||||
"""
|
||||
|
||||
for i, func in enumerate(self.residual_blocks):
|
||||
x, skip = func.add_input(x, condition)
|
||||
if i == 0:
|
||||
skip_connections = skip
|
||||
else:
|
||||
loss.backward()
|
||||
skip_connections = F.scale(skip_connections + skip,
|
||||
np.sqrt(0.5))
|
||||
return skip_connections
|
||||
|
||||
if isinstance(self.optimizer._learning_rate,
|
||||
fluid.optimizer.LearningRateDecay):
|
||||
current_lr = self.optimizer._learning_rate.step().numpy()
|
||||
|
||||
class WaveNet(dg.Layer):
|
||||
def __init__(self, n_loop, n_layer, residual_channels, output_dim,
|
||||
condition_dim, filter_size, loss_type, log_scale_min):
|
||||
super().__init__()
|
||||
if loss_type not in ["softmax", "mog"]:
|
||||
raise ValueError("loss_type {} is not supported".format(loss_type))
|
||||
if loss_type == "softmax":
|
||||
self.embed = dg.Embedding((output_dim, residual_channels))
|
||||
else:
|
||||
current_lr = self.optimizer._learning_rate
|
||||
assert output_dim % 3 == 0, "with MoG output, the output dim must be divided by 3"
|
||||
self.embed = Linear(1, residual_channels)
|
||||
|
||||
self.optimizer.minimize(
|
||||
loss,
|
||||
grad_clip=self.clipper,
|
||||
parameter_list=self.wavenet.parameters())
|
||||
self.wavenet.clear_gradients()
|
||||
self.resnet = ResidualNet(n_loop, n_layer, residual_channels,
|
||||
condition_dim, filter_size)
|
||||
self.context_size = self.resnet.context_size
|
||||
|
||||
graph_time = time.time()
|
||||
skip_channels = residual_channels # assume the same channel
|
||||
self.proj1 = Linear(skip_channels, skip_channels)
|
||||
self.proj2 = Linear(skip_channels, skip_channels)
|
||||
# if loss_type is softmax, output_dim is n_vocab of waveform magnitude.
|
||||
# if loss_type is mog, output_dim is 3 * gaussian, (weight, mean and stddev)
|
||||
self.proj3 = Linear(skip_channels, output_dim)
|
||||
|
||||
if self.rank == 0:
|
||||
loss_val = float(loss.numpy()) * self.nranks
|
||||
log = "Rank: {} Step: {:^8d} Loss: {:<8.3f} " \
|
||||
"Time: {:.3f}/{:.3f}".format(
|
||||
self.rank, iteration, loss_val,
|
||||
load_time - start_time, graph_time - load_time)
|
||||
print(log)
|
||||
self.loss_type = loss_type
|
||||
self.output_dim = output_dim
|
||||
self.input_dim = 1
|
||||
self.skip_channels = skip_channels
|
||||
self.log_scale_min = log_scale_min
|
||||
|
||||
tb = self.tb_logger
|
||||
tb.add_scalar("Train-Loss-Rank-0", loss_val, iteration)
|
||||
tb.add_scalar("Learning-Rate", current_lr, iteration)
|
||||
def forward(self, x, condition=None):
|
||||
"""(Possibly) Conditonal Wavenet.
|
||||
|
||||
@dg.no_grad
|
||||
def valid_step(self, iteration):
|
||||
self.wavenet.eval()
|
||||
Arguments:
|
||||
x {Variable} -- shape(batch_size, time_steps), the input signal of wavenet. The waveform in 0.5 seconds.
|
||||
|
||||
total_loss = []
|
||||
sample_audios = []
|
||||
start_time = time.time()
|
||||
for audios, mels, audio_starts in self.validloader():
|
||||
loss, sample_audio = self.wavenet(audios, mels, audio_starts, True)
|
||||
total_loss.append(float(loss.numpy()))
|
||||
sample_audios.append(sample_audio)
|
||||
total_time = time.time() - start_time
|
||||
Keyword Arguments:
|
||||
conditions {Variable} -- shape(batch_size, condition_dim, 1, time_steps), the upsampled local condition. (default: {None})
|
||||
|
||||
if self.rank == 0:
|
||||
loss_val = np.mean(total_loss)
|
||||
log = "Test | Rank: {} AvgLoss: {:<8.3f} Time {:<8.3f}".format(
|
||||
self.rank, loss_val, total_time)
|
||||
print(log)
|
||||
Returns:
|
||||
Variable -- shape(batch_size, time_steps, output_dim), output distributions at each time_steps.
|
||||
"""
|
||||
|
||||
tb = self.tb_logger
|
||||
tb.add_scalar("Valid-Avg-Loss", loss_val, iteration)
|
||||
tb.add_audio(
|
||||
"Teacher-Forced-Audio-0",
|
||||
sample_audios[0].numpy(),
|
||||
iteration,
|
||||
sample_rate=self.config.sample_rate)
|
||||
tb.add_audio(
|
||||
"Teacher-Forced-Audio-1",
|
||||
sample_audios[1].numpy(),
|
||||
iteration,
|
||||
sample_rate=self.config.sample_rate)
|
||||
# CAUTION: rank-4 condition here
|
||||
# Causal Conv
|
||||
if self.loss_type == "softmax":
|
||||
x = F.clip(x, min=-1., max=0.99999)
|
||||
x = quantize(x, self.output_dim)
|
||||
x = self.embed(x) # (B, T, C)
|
||||
else:
|
||||
x = F.unsqueeze(x, axes=[-1]) # (B, T, 1)
|
||||
x = self.embed(x) # (B, T, C)
|
||||
x = F.transpose(x, perm=[0, 2, 1]) # (B, C, T)
|
||||
|
||||
@dg.no_grad
|
||||
def infer(self, iteration):
|
||||
self.wavenet.eval()
|
||||
# Residual & Skip-conenection & linears
|
||||
z = self.resnet(x, condition)
|
||||
|
||||
config = self.config
|
||||
sample = config.sample
|
||||
z = F.transpose(z, [0, 2, 1])
|
||||
z = F.relu(self.proj2(F.relu(self.proj1(z))))
|
||||
|
||||
output = "{}/{}/iter-{}".format(config.output, config.name, iteration)
|
||||
os.makedirs(output, exist_ok=True)
|
||||
y = self.proj3(z)
|
||||
return y
|
||||
|
||||
filename = "{}/valid_{}.wav".format(output, sample)
|
||||
print("Synthesize sample {}, save as {}".format(sample, filename))
|
||||
def start_sequence(self):
|
||||
self.resnet.start_sequence()
|
||||
|
||||
mels_list = [mels for _, mels, _ in self.validloader()]
|
||||
start_time = time.time()
|
||||
syn_audio = self.wavenet.synthesize(mels_list[sample])
|
||||
syn_time = time.time() - start_time
|
||||
print("audio shape {}, synthesis time {}".format(syn_audio.shape,
|
||||
syn_time))
|
||||
librosa.output.write_wav(filename, syn_audio, sr=config.sample_rate)
|
||||
def add_input(self, x, condition=None):
|
||||
"""add step input
|
||||
|
||||
def save(self, iteration):
|
||||
utils.save_latest_parameters(self.checkpoint_dir, iteration,
|
||||
self.wavenet, self.optimizer)
|
||||
utils.save_latest_checkpoint(self.checkpoint_dir, iteration)
|
||||
Arguments:
|
||||
x {Variable} -- shape(batch_size, time_steps=1), step input.
|
||||
|
||||
Keyword Arguments:
|
||||
condition {Variable} -- shape(batch_size, condition_dim , 1, time_steps=1) (default: {None})
|
||||
|
||||
Returns:
|
||||
Variable -- ouput parameter for the distribution.
|
||||
"""
|
||||
|
||||
# Causal Conv
|
||||
if self.loss_type == "softmax":
|
||||
x = quantize(x, self.output_dim)
|
||||
x = self.embed(x) # (B, T, C), T=1
|
||||
else:
|
||||
x = F.unsqueeze(x, axes=[-1]) # (B, T, 1), T=1
|
||||
x = self.embed(x) # (B, T, C)
|
||||
x = F.transpose(x, perm=[0, 2, 1])
|
||||
|
||||
# Residual & Skip-conenection & linears
|
||||
z = self.resnet.add_input(x, condition)
|
||||
z = F.transpose(z, [0, 2, 1])
|
||||
z = F.relu(self.proj2(F.relu(self.proj1(z)))) # (B, T, C)
|
||||
|
||||
# Output
|
||||
y = self.proj3(z)
|
||||
return y
|
||||
|
||||
def compute_softmax_loss(self, y, t):
|
||||
"""compute loss, it is basically a language_model-like loss.
|
||||
|
||||
Arguments:
|
||||
y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution of multinomial distribution.
|
||||
t {Variable} -- shape(batch_size, time_steps - 1), target waveform.
|
||||
|
||||
Returns:
|
||||
Variable -- shape(1,), loss
|
||||
"""
|
||||
|
||||
# context size is not taken into account
|
||||
y = y[:, self.context_size:, :]
|
||||
t = t[:, self.context_size:]
|
||||
t = F.clip(t, min=-1.0, max=0.99999)
|
||||
quantized = quantize(t, n_bands=self.output_dim)
|
||||
label = F.unsqueeze(quantized, axes=[-1])
|
||||
|
||||
loss = F.softmax_with_cross_entropy(y, label)
|
||||
reduced_loss = F.reduce_mean(loss)
|
||||
return reduced_loss
|
||||
|
||||
def sample_from_softmax(self, y):
|
||||
"""sample from output distribution.
|
||||
|
||||
Arguments:
|
||||
y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution.
|
||||
|
||||
Returns:
|
||||
Variable -- shape(batch_size, time_steps - 1), samples.
|
||||
"""
|
||||
|
||||
# dequantize
|
||||
batch_size, time_steps, output_dim, = y.shape
|
||||
y = F.reshape(y, (batch_size * time_steps, output_dim))
|
||||
prob = F.softmax(y)
|
||||
quantized = F.sampling_id(prob)
|
||||
samples = dequantize(quantized, n_bands=self.output_dim)
|
||||
samples = F.reshape(samples, (batch_size, -1))
|
||||
return samples
|
||||
|
||||
def compute_mog_loss(self, y, t):
|
||||
"""compute the loss with an mog output distribution.
|
||||
WARNING: this is not a legal probability, but a density. so it might be greater than 1.
|
||||
|
||||
Arguments:
|
||||
y {Variable} -- shape(batch_size, time_steps, output_dim), output distribution's parameter. To represent a mixture of Gaussians. The output for each example at each time_step consists of 3 parts. The mean, the stddev, and a weight for that gaussian.
|
||||
t {Variable} -- shape(batch_size, time_steps), target waveform.
|
||||
|
||||
Returns:
|
||||
Variable -- loss, note that it is computed with the pdf of the MoG distribution.
|
||||
"""
|
||||
|
||||
n_mixture = self.output_dim // 3
|
||||
|
||||
# context size is not taken in to account
|
||||
y = y[:, self.context_size:, :]
|
||||
t = t[:, self.context_size:]
|
||||
|
||||
w, mu, log_std = F.split(y, 3, dim=2)
|
||||
# 100.0 is just a large float
|
||||
log_std = F.clip(log_std, min=self.log_scale_min, max=100.)
|
||||
inv_std = F.exp(-log_std)
|
||||
p_mixture = F.softmax(w, axis=-1)
|
||||
|
||||
t = F.unsqueeze(t, axes=[-1])
|
||||
if n_mixture > 1:
|
||||
# t = F.expand_as(t, log_std)
|
||||
t = F.expand(t, [1, 1, n_mixture])
|
||||
|
||||
x_std = inv_std * (t - mu)
|
||||
exponent = F.exp(-0.5 * x_std * x_std)
|
||||
pdf_x = 1.0 / np.sqrt(2.0 * np.pi) * inv_std * exponent
|
||||
pdf_x = p_mixture * pdf_x
|
||||
# pdf_x: [bs, len]
|
||||
pdf_x = F.reduce_sum(pdf_x, dim=-1)
|
||||
per_sample_loss = -F.log(pdf_x + 1e-9)
|
||||
|
||||
loss = F.reduce_mean(per_sample_loss)
|
||||
return loss
|
||||
|
||||
def sample_from_mog(self, y):
|
||||
"""sample from output distribution.
|
||||
|
||||
Arguments:
|
||||
y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution.
|
||||
|
||||
Returns:
|
||||
Variable -- shape(batch_size, time_steps - 1), samples.
|
||||
"""
|
||||
|
||||
batch_size, time_steps, output_dim = y.shape
|
||||
n_mixture = output_dim // 3
|
||||
|
||||
w, mu, log_std = F.split(y, 3, dim=-1)
|
||||
|
||||
reshaped_w = F.reshape(w, (batch_size * time_steps, n_mixture))
|
||||
prob_ids = F.sampling_id(F.softmax(reshaped_w))
|
||||
prob_ids = F.reshape(prob_ids, (batch_size, time_steps))
|
||||
prob_ids = prob_ids.numpy()
|
||||
|
||||
index = np.array([[[b, t, prob_ids[b, t]] for t in range(time_steps)]
|
||||
for b in range(batch_size)]).astype("int32")
|
||||
index_var = dg.to_variable(index)
|
||||
|
||||
mu_ = F.gather_nd(mu, index_var)
|
||||
log_std_ = F.gather_nd(log_std, index_var)
|
||||
|
||||
dist = D.Normal(mu_, F.exp(log_std_))
|
||||
samples = dist.sample(shape=[])
|
||||
samples = F.clip(samples, min=-1., max=1.)
|
||||
return samples
|
||||
|
||||
def sample(self, y):
|
||||
"""sample from output distribution.
|
||||
|
||||
Arguments:
|
||||
y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution.
|
||||
|
||||
Returns:
|
||||
Variable -- shape(batch_size, time_steps - 1), samples.
|
||||
"""
|
||||
|
||||
if self.loss_type == "softmax":
|
||||
return self.sample_from_softmax(y)
|
||||
else:
|
||||
return self.sample_from_mog(y)
|
||||
|
||||
def loss(self, y, t):
|
||||
"""compute loss.
|
||||
|
||||
Arguments:
|
||||
y {Variable} -- shape(batch_size, time_steps - 1, output_dim), output distribution of multinomial distribution.
|
||||
t {Variable} -- shape(batch_size, time_steps - 1), target waveform.
|
||||
|
||||
Returns:
|
||||
Variable -- shape(1,), loss
|
||||
"""
|
||||
|
||||
if self.loss_type == "softmax":
|
||||
return self.compute_softmax_loss(y, t)
|
||||
else:
|
||||
return self.compute_mog_loss(y, t)
|
||||
|
|
|
@ -1,388 +0,0 @@
|
|||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import itertools
|
||||
|
||||
import numpy as np
|
||||
import paddle.fluid.dygraph as dg
|
||||
from paddle import fluid
|
||||
from parakeet.modules import conv, modules
|
||||
|
||||
|
||||
def get_padding(filter_size, stride, padding_type='same'):
|
||||
if padding_type == 'same':
|
||||
padding = [(x - y) // 2 for x, y in zip(filter_size, stride)]
|
||||
else:
|
||||
raise ValueError("Only support same padding")
|
||||
return padding
|
||||
|
||||
|
||||
def extract_slices(x, audio_starts, audio_length, rank):
|
||||
slices = []
|
||||
for i in range(x.shape[0]):
|
||||
start = audio_starts.numpy()[i]
|
||||
end = start + audio_length
|
||||
slice = fluid.layers.slice(
|
||||
x, axes=[0, 1], starts=[i, start], ends=[i + 1, end])
|
||||
slices.append(fluid.layers.squeeze(slice, [0]))
|
||||
|
||||
x = fluid.layers.stack(slices, axis=0)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Conditioner(dg.Layer):
|
||||
def __init__(self, name_scope, config):
|
||||
super(Conditioner, self).__init__(name_scope)
|
||||
upsample_factors = config.conditioner.upsample_factors
|
||||
filter_sizes = config.conditioner.filter_sizes
|
||||
assert np.prod(upsample_factors) == config.fft_window_shift
|
||||
|
||||
self.deconvs = []
|
||||
for i, up_scale in enumerate(upsample_factors):
|
||||
stride = (up_scale, 1)
|
||||
padding = get_padding(filter_sizes[i], stride)
|
||||
self.deconvs.append(
|
||||
modules.Conv2DTranspose(
|
||||
self.full_name(),
|
||||
num_filters=1,
|
||||
filter_size=filter_sizes[i],
|
||||
padding=padding,
|
||||
stride=stride))
|
||||
|
||||
# Register python list as parameters.
|
||||
for i, layer in enumerate(self.deconvs):
|
||||
self.add_sublayer("conv_transpose_{}".format(i), layer)
|
||||
|
||||
def forward(self, x):
|
||||
x = fluid.layers.unsqueeze(x, 1)
|
||||
for layer in self.deconvs:
|
||||
x = fluid.layers.leaky_relu(layer(x), alpha=0.4)
|
||||
|
||||
return fluid.layers.squeeze(x, [1])
|
||||
|
||||
|
||||
class WaveNetModule(dg.Layer):
|
||||
def __init__(self, name_scope, config, rank):
|
||||
super(WaveNetModule, self).__init__(name_scope)
|
||||
|
||||
self.rank = rank
|
||||
self.conditioner = Conditioner(self.full_name(), config)
|
||||
self.dilations = list(
|
||||
itertools.islice(
|
||||
itertools.cycle(config.dilation_block), config.layers))
|
||||
self.context_size = sum(self.dilations) + 1
|
||||
self.log_scale_min = config.log_scale_min
|
||||
self.config = config
|
||||
|
||||
print("dilations", self.dilations)
|
||||
print("context_size", self.context_size)
|
||||
|
||||
if config.loss_type == "softmax":
|
||||
self.embedding_fc = modules.Embedding(
|
||||
self.full_name(),
|
||||
num_embeddings=config.num_channels,
|
||||
embed_dim=config.residual_channels,
|
||||
std=0.1)
|
||||
elif config.loss_type == "mix-gaussian-pdf":
|
||||
self.embedding_fc = modules.FC(self.full_name(),
|
||||
in_features=1,
|
||||
size=config.residual_channels,
|
||||
num_flatten_dims=2,
|
||||
relu=False)
|
||||
else:
|
||||
raise ValueError("loss_type {} is unsupported!".format(loss_type))
|
||||
|
||||
self.dilated_causal_convs = []
|
||||
for dilation in self.dilations:
|
||||
self.dilated_causal_convs.append(
|
||||
modules.Conv1D_GU(
|
||||
self.full_name(),
|
||||
conditioner_dim=config.mel_bands,
|
||||
in_channels=config.residual_channels,
|
||||
num_filters=config.residual_channels,
|
||||
filter_size=config.kernel_width,
|
||||
dilation=dilation,
|
||||
causal=True))
|
||||
|
||||
for i, layer in enumerate(self.dilated_causal_convs):
|
||||
self.add_sublayer("dilated_causal_conv_{}".format(i), layer)
|
||||
|
||||
self.fc1 = modules.FC(self.full_name(),
|
||||
in_features=config.residual_channels,
|
||||
size=config.skip_channels,
|
||||
num_flatten_dims=2,
|
||||
relu=True,
|
||||
act="relu")
|
||||
|
||||
self.fc2 = modules.FC(self.full_name(),
|
||||
in_features=config.skip_channels,
|
||||
size=config.skip_channels,
|
||||
num_flatten_dims=2,
|
||||
relu=True,
|
||||
act="relu")
|
||||
|
||||
if config.loss_type == "softmax":
|
||||
self.fc3 = modules.FC(self.full_name(),
|
||||
in_features=config.skip_channels,
|
||||
size=config.num_channels,
|
||||
num_flatten_dims=2,
|
||||
relu=False)
|
||||
elif config.loss_type == "mix-gaussian-pdf":
|
||||
self.fc3 = modules.FC(self.full_name(),
|
||||
in_features=config.skip_channels,
|
||||
size=3 * config.num_mixtures,
|
||||
num_flatten_dims=2,
|
||||
relu=False)
|
||||
else:
|
||||
raise ValueError("loss_type {} is unsupported!".format(loss_type))
|
||||
|
||||
def sample_softmax(self, mix_parameters):
|
||||
batch, length, hidden = mix_parameters.shape
|
||||
mix_param_2d = fluid.layers.reshape(mix_parameters,
|
||||
[batch * length, hidden])
|
||||
mix_param_2d = fluid.layers.softmax(mix_param_2d, axis=-1)
|
||||
|
||||
# quantized: [batch * length]
|
||||
quantized = fluid.layers.cast(
|
||||
fluid.layers.sampling_id(mix_param_2d), dtype="float32")
|
||||
samples = (quantized + 0.5) * (2.0 / self.config.num_channels) - 1.0
|
||||
|
||||
# samples: [batch * length]
|
||||
return samples
|
||||
|
||||
def sample_mix_gaussian(self, mix_parameters):
|
||||
# mix_parameters reshape from [bs, len, 3 * num_mixtures]
|
||||
# to [bs * len, 3 * num_mixtures].
|
||||
batch, length, hidden = mix_parameters.shape
|
||||
mix_param_2d = fluid.layers.reshape(mix_parameters,
|
||||
[batch * length, hidden])
|
||||
K = hidden // 3
|
||||
|
||||
# Unpack the parameters of the mixture of gaussian.
|
||||
logits_pi = mix_param_2d[:, 0:K]
|
||||
mu = mix_param_2d[:, K:2 * K]
|
||||
log_s = mix_param_2d[:, 2 * K:3 * K]
|
||||
s = fluid.layers.exp(log_s)
|
||||
|
||||
pi = fluid.layers.softmax(logits_pi, axis=-1)
|
||||
comp_samples = fluid.layers.sampling_id(pi)
|
||||
|
||||
row_idx = dg.to_variable(np.arange(batch * length))
|
||||
comp_samples = fluid.layers.stack([row_idx, comp_samples], axis=-1)
|
||||
|
||||
mu_comp = fluid.layers.gather_nd(mu, comp_samples)
|
||||
s_comp = fluid.layers.gather_nd(s, comp_samples)
|
||||
|
||||
# N(0, 1) normal sample.
|
||||
u = fluid.layers.gaussian_random(shape=[batch * length])
|
||||
samples = mu_comp + u * s_comp
|
||||
samples = fluid.layers.clip(samples, min=-1.0, max=1.0)
|
||||
|
||||
return samples
|
||||
|
||||
def softmax_loss(self, targets, mix_parameters):
|
||||
targets = targets[:, self.context_size:]
|
||||
mix_parameters = mix_parameters[:, self.context_size:, :]
|
||||
|
||||
# Quantized audios to integral values with range [0, num_channels)
|
||||
num_channels = self.config.num_channels
|
||||
targets = fluid.layers.clip(targets, min=-1.0, max=0.99999)
|
||||
quantized = fluid.layers.cast(
|
||||
(targets + 1.0) / 2.0 * num_channels, dtype="int64")
|
||||
|
||||
# per_sample_loss shape: [bs, len, 1]
|
||||
per_sample_loss = fluid.layers.softmax_with_cross_entropy(
|
||||
logits=mix_parameters, label=fluid.layers.unsqueeze(quantized, 2))
|
||||
loss = fluid.layers.reduce_mean(per_sample_loss)
|
||||
|
||||
return loss
|
||||
|
||||
def mixture_density_loss(self, targets, mix_parameters, log_scale_min):
|
||||
# targets: [bs, len]
|
||||
# mix_params: [bs, len, 3 * num_mixture]
|
||||
targets = targets[:, self.context_size:]
|
||||
mix_parameters = mix_parameters[:, self.context_size:, :]
|
||||
|
||||
# log_s: [bs, len, num_mixture]
|
||||
logits_pi, mu, log_s = fluid.layers.split(
|
||||
mix_parameters, num_or_sections=3, dim=-1)
|
||||
|
||||
pi = fluid.layers.softmax(logits_pi, axis=-1)
|
||||
log_s = fluid.layers.clip(log_s, min=log_scale_min, max=100.0)
|
||||
inv_s = fluid.layers.exp(0.0 - log_s)
|
||||
|
||||
# Calculate gaussian loss.
|
||||
targets = fluid.layers.unsqueeze(targets, -1)
|
||||
targets = fluid.layers.expand(targets,
|
||||
[1, 1, self.config.num_mixtures])
|
||||
x_std = inv_s * (targets - mu)
|
||||
exponent = fluid.layers.exp(-0.5 * x_std * x_std)
|
||||
pdf_x = 1.0 / np.sqrt(2.0 * np.pi) * inv_s * exponent
|
||||
pdf_x = pi * pdf_x
|
||||
# pdf_x: [bs, len]
|
||||
pdf_x = fluid.layers.reduce_sum(pdf_x, dim=-1)
|
||||
per_sample_loss = 0.0 - fluid.layers.log(pdf_x + 1e-9)
|
||||
|
||||
loss = fluid.layers.reduce_mean(per_sample_loss)
|
||||
|
||||
return loss
|
||||
|
||||
def forward(self, audios, mels, audio_starts, sample=False):
|
||||
# Build conditioner based on mels.
|
||||
full_conditioner = self.conditioner(mels)
|
||||
|
||||
# Slice conditioners.
|
||||
audio_length = audios.shape[1]
|
||||
conditioner = extract_slices(full_conditioner, audio_starts,
|
||||
audio_length, self.rank)
|
||||
|
||||
# input_audio, target_audio: [bs, len]
|
||||
input_audios = audios[:, :-1]
|
||||
target_audios = audios[:, 1:]
|
||||
# conditioner: [bs, len, mel_bands]
|
||||
conditioner = conditioner[:, 1:, :]
|
||||
|
||||
loss_type = self.config.loss_type
|
||||
|
||||
if loss_type == "softmax":
|
||||
input_audios = fluid.layers.clip(
|
||||
input_audios, min=-1.0, max=0.99999)
|
||||
# quantized have values in [0, num_channels)
|
||||
quantized = fluid.layers.cast(
|
||||
(input_audios + 1.0) / 2.0 * self.config.num_channels,
|
||||
dtype="int64")
|
||||
layer_input = self.embedding_fc(
|
||||
fluid.layers.unsqueeze(quantized, 2))
|
||||
elif loss_type == "mix-gaussian-pdf":
|
||||
layer_input = self.embedding_fc(
|
||||
fluid.layers.unsqueeze(input_audios, 2))
|
||||
else:
|
||||
raise ValueError("loss_type {} is unsupported!".format(loss_type))
|
||||
|
||||
# layer_input: [bs, res_channel, 1, len]
|
||||
layer_input = fluid.layers.unsqueeze(
|
||||
fluid.layers.transpose(
|
||||
layer_input, perm=[0, 2, 1]), 2)
|
||||
# conditioner: [bs, mel_bands, 1, len]
|
||||
conditioner = fluid.layers.unsqueeze(
|
||||
fluid.layers.transpose(
|
||||
conditioner, perm=[0, 2, 1]), 2)
|
||||
|
||||
skip = None
|
||||
for i, layer in enumerate(self.dilated_causal_convs):
|
||||
# layer_input: [bs, res_channel, 1, len]
|
||||
# skip: [bs, res_channel, 1, len]
|
||||
layer_input, skip = layer(layer_input, skip, conditioner)
|
||||
|
||||
# Reshape skip to [bs, len, res_channel]
|
||||
skip = fluid.layers.transpose(
|
||||
fluid.layers.squeeze(skip, [2]), perm=[0, 2, 1])
|
||||
mix_parameters = self.fc3(self.fc2(self.fc1(skip)))
|
||||
|
||||
# Sample teacher-forced audio.
|
||||
sample_audios = None
|
||||
if sample:
|
||||
if loss_type == "softmax":
|
||||
sample_audios = self.sample_softmax(mix_parameters)
|
||||
elif loss_type == "mix-gaussian-pdf":
|
||||
sample_audios = self.sample_mix_gaussian(mix_parameters)
|
||||
else:
|
||||
raise ValueError("loss_type {} is unsupported!".format(
|
||||
loss_type))
|
||||
|
||||
if loss_type == "softmax":
|
||||
loss = self.softmax_loss(target_audios, mix_parameters)
|
||||
elif loss_type == "mix-gaussian-pdf":
|
||||
loss = self.mixture_density_loss(target_audios, mix_parameters,
|
||||
self.log_scale_min)
|
||||
else:
|
||||
raise ValueError("loss_type {} is unsupported!".format(loss_type))
|
||||
|
||||
return loss, sample_audios
|
||||
|
||||
def synthesize(self, mels):
|
||||
self.start_new_sequence()
|
||||
bs, n_frames, mel_bands = mels.shape
|
||||
conditioner = self.conditioner(mels)
|
||||
time_steps = conditioner.shape[1]
|
||||
|
||||
print("input mels shape", mels.shape)
|
||||
print("Total synthesis steps", time_steps)
|
||||
|
||||
loss_type = self.config.loss_type
|
||||
audio_samples = []
|
||||
current_sample = fluid.layers.zeros(shape=[bs, 1, 1], dtype="float32")
|
||||
for i in range(time_steps):
|
||||
if i % 100 == 0:
|
||||
print("Step", i)
|
||||
|
||||
# Convert from real value sample to audio embedding.
|
||||
# audio_input: [bs, 1, channel]
|
||||
if loss_type == "softmax":
|
||||
current_sample = fluid.layers.clip(
|
||||
current_sample, min=-1.0, max=0.99999)
|
||||
# quantized have values in [0, num_channels)
|
||||
quantized = fluid.layers.cast(
|
||||
(current_sample + 1.0) / 2.0 * self.config.num_channels,
|
||||
dtype="int64")
|
||||
audio_input = self.embedding_fc(quantized)
|
||||
elif loss_type == "mix-gaussian-pdf":
|
||||
audio_input = self.embedding_fc(current_sample)
|
||||
else:
|
||||
raise ValueError("loss_type {} is unsupported!".format(
|
||||
loss_type))
|
||||
|
||||
# [bs, channel, 1, 1]
|
||||
audio_input = fluid.layers.unsqueeze(
|
||||
fluid.layers.transpose(
|
||||
audio_input, perm=[0, 2, 1]), 2)
|
||||
# [bs, mel_bands]
|
||||
cond_input = conditioner[:, i, :]
|
||||
# [bs, mel_bands, 1, 1]
|
||||
cond_input = fluid.layers.reshape(cond_input,
|
||||
cond_input.shape + [1, 1])
|
||||
|
||||
skip = None
|
||||
for layer in self.dilated_causal_convs:
|
||||
audio_input, skip = layer.add_input(audio_input, skip,
|
||||
cond_input)
|
||||
|
||||
# [bs, 1, channel]
|
||||
skip = fluid.layers.transpose(
|
||||
fluid.layers.squeeze(skip, [2]), perm=[0, 2, 1])
|
||||
mix_parameters = self.fc3(self.fc2(self.fc1(skip)))
|
||||
if loss_type == "softmax":
|
||||
sample = self.sample_softmax(mix_parameters)
|
||||
elif loss_type == "mix-gaussian-pdf":
|
||||
sample = self.sample_mix_gaussian(mix_parameters)
|
||||
else:
|
||||
raise ValueError("loss_type {} is unsupported!".format(
|
||||
loss_type))
|
||||
audio_samples.append(sample)
|
||||
# [bs]
|
||||
current_sample = audio_samples[-1]
|
||||
# [bs, 1, 1]
|
||||
current_sample = fluid.layers.reshape(
|
||||
current_sample, current_sample.shape + [1, 1])
|
||||
|
||||
# syn_audio: [num_samples]
|
||||
syn_audio = fluid.layers.concat(audio_samples, axis=0).numpy()
|
||||
|
||||
return syn_audio
|
||||
|
||||
def start_new_sequence(self):
|
||||
for layer in self.sublayers():
|
||||
if isinstance(layer, conv.Conv1D):
|
||||
layer.start_new_sequence()
|
Loading…
Reference in New Issue