Merge branch 'add_TranTTS' into 'master'

right fastspeech version.

See merge request !5
This commit is contained in:
lifuchen 2020-01-22 15:47:42 +08:00
commit abc2b5377b
17 changed files with 224 additions and 374 deletions

View File

@ -209,7 +209,7 @@ class AudioProcessor(object):
def inv_melspectrogram(self, mel_spectrogram): def inv_melspectrogram(self, mel_spectrogram):
S = self._denormalize(mel_spectrogram) S = self._denormalize(mel_spectrogram)
S = self._db_to_amplitude(S + self.ref_level_db) S = self._db_to_amplitude(S + self.ref_level_db)
S = self._linear_to_mel(np.abs(S)) S = self._mel_to_linear(np.abs(S))
if self.preemphasis: if self.preemphasis:
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power)) return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
return self._griffin_lim(S ** self.power) return self._griffin_lim(S ** self.power)

View File

@ -1,148 +0,0 @@
from pathlib import Path
import numpy as np
import pandas as pd
import librosa
from paddle import fluid
from parakeet import g2p
from parakeet import audio
from parakeet.data.sampler import *
from parakeet.data.datacargo import DataCargo
from parakeet.data.dataset import Dataset
from parakeet.data.batch import TextIDBatcher, SpecBatcher
class LJSpeechLoader:
def __init__(self, config, nranks, rank, is_vocoder=False, shuffle=True):
place = fluid.CUDAPlace(rank) if config.use_gpu else fluid.CPUPlace()
LJSPEECH_ROOT = Path(config.data_path)
dataset = LJSpeech(LJSPEECH_ROOT, config)
sampler = DistributedSampler(len(dataset), nranks, rank, shuffle=shuffle)
assert config.batch_size % nranks == 0
each_bs = config.batch_size // nranks
if is_vocoder:
dataloader = DataCargo(dataset, sampler=sampler, batch_size=each_bs, shuffle=shuffle, collate_fn=batch_examples_vocoder, drop_last=True)
else:
dataloader = DataCargo(dataset, sampler=sampler, batch_size=each_bs, shuffle=shuffle, collate_fn=batch_examples, drop_last=True)
self.reader = fluid.io.DataLoader.from_generator(
capacity=32,
iterable=True,
use_double_buffer=True,
return_list=True)
self.reader.set_batch_generator(dataloader, place)
class LJSpeech(Dataset):
def __init__(self, root, config):
super(LJSpeech, self).__init__()
assert isinstance(root, (str, Path)), "root should be a string or Path object"
self.root = root if isinstance(root, Path) else Path(root)
self.metadata = self._prepare_metadata()
self.config = config
self._ljspeech_processor = audio.AudioProcessor(
sample_rate=config.audio.sr,
num_mels=config.audio.num_mels,
min_level_db=config.audio.min_level_db,
ref_level_db=config.audio.ref_level_db,
n_fft=config.audio.n_fft,
win_length= config.audio.win_length,
hop_length= config.audio.hop_length,
power=config.audio.power,
preemphasis=config.audio.preemphasis,
signal_norm=True,
symmetric_norm=False,
max_norm=1.,
mel_fmin=0,
mel_fmax=None,
clip_norm=True,
griffin_lim_iters=60,
do_trim_silence=False,
sound_norm=False)
def _prepare_metadata(self):
csv_path = self.root.joinpath("metadata.csv")
metadata = pd.read_csv(csv_path, sep="|", header=None, quoting=3,
names=["fname", "raw_text", "normalized_text"])
return metadata
def _get_example(self, metadatum):
"""All the code for generating an Example from a metadatum. If you want a
different preprocessing pipeline, you can override this method.
This method may require several processor, each of which has a lot of options.
In this case, you'd better pass a composed transform and pass it to the init
method.
"""
fname, raw_text, normalized_text = metadatum
wav_path = self.root.joinpath("wavs", fname + ".wav")
# load -> trim -> preemphasis -> stft -> magnitude -> mel_scale -> logscale -> normalize
wav = self._ljspeech_processor.load_wav(str(wav_path))
mag = self._ljspeech_processor.spectrogram(wav).astype(np.float32)
mel = self._ljspeech_processor.melspectrogram(wav).astype(np.float32)
phonemes = np.array(g2p.en.text_to_sequence(normalized_text), dtype=np.int64)
return (mag, mel, phonemes) # maybe we need to implement it as a map in the future
def __getitem__(self, index):
metadatum = self.metadata.iloc[index]
example = self._get_example(metadatum)
return example
def __iter__(self):
for i in range(len(self)):
yield self[i]
def __len__(self):
return len(self.metadata)
def batch_examples(batch):
texts = []
mels = []
mel_inputs = []
text_lens = []
pos_texts = []
pos_mels = []
for data in batch:
_, mel, text = data
mel_inputs.append(np.concatenate([np.zeros([mel.shape[0], 1], np.float32), mel[:,:-1]], axis=-1))
text_lens.append(len(text))
pos_texts.append(np.arange(1, len(text) + 1))
pos_mels.append(np.arange(1, mel.shape[1] + 1))
mels.append(mel)
texts.append(text)
# Sort by text_len in descending order
texts = [i for i,_ in sorted(zip(texts, text_lens), key=lambda x: x[1], reverse=True)]
mels = [i for i,_ in sorted(zip(mels, text_lens), key=lambda x: x[1], reverse=True)]
mel_inputs = [i for i,_ in sorted(zip(mel_inputs, text_lens), key=lambda x: x[1], reverse=True)]
pos_texts = [i for i,_ in sorted(zip(pos_texts, text_lens), key=lambda x: x[1], reverse=True)]
pos_mels = [i for i,_ in sorted(zip(pos_mels, text_lens), key=lambda x: x[1], reverse=True)]
text_lens = sorted(text_lens, reverse=True)
# Pad sequence with largest len of the batch
texts = TextIDBatcher(pad_id=0)(texts) #(B, T)
pos_texts = TextIDBatcher(pad_id=0)(pos_texts) #(B,T)
pos_mels = TextIDBatcher(pad_id=0)(pos_mels) #(B,T)
mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1)) #(B,T,num_mels)
mel_inputs = np.transpose(SpecBatcher(pad_value=0.)(mel_inputs), axes=(0,2,1))#(B,T,num_mels)
return (texts, mels, mel_inputs, pos_texts, pos_mels, np.array(text_lens))
def batch_examples_vocoder(batch):
mels=[]
mags=[]
for data in batch:
mag, mel, _ = data
mels.append(mel)
mags.append(mag)
mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1))
mags = np.transpose(SpecBatcher(pad_value=0.)(mags), axes=(0,2,1))
return (mels, mags)

View File

@ -39,5 +39,8 @@ use_data_parallel: False
data_path: ../../../dataset/LJSpeech-1.1 data_path: ../../../dataset/LJSpeech-1.1
transtts_path: ../transformerTTS/checkpoint/ transtts_path: ../transformerTTS/checkpoint/
transformer_step: 10 transformer_step: 200000
save_path: ./checkpoint
log_dir: ./log log_dir: ./log
#checkpoint_path: ./checkpoint
#ransformer_step: 97000

View File

@ -0,0 +1,33 @@
audio:
num_mels: 80
n_fft: 2048
sr: 22050
preemphasis: 0.97
hop_length: 275
win_length: 1102
power: 1.2
min_level_db: -100
ref_level_db: 20
outputs_per_step: 1
encoder_n_layer: 6
encoder_head: 2
encoder_conv1d_filter_size: 1536
max_sep_len: 2048
decoder_n_layer: 6
decoder_head: 2
decoder_conv1d_filter_size: 1536
fs_hidden_size: 384
duration_predictor_output_size: 256
duration_predictor_filter_size: 3
fft_conv1d_filter: 3
fft_conv1d_padding: 1
dropout: 0.1
transformer_head: 4
use_gpu: True
alpha: 1.0
checkpoint_path: checkpoint/
fastspeech_step: 71000
log_dir: ./log

View File

@ -102,7 +102,8 @@ class LengthRegulator(dg.Layer):
else: else:
duration_predictor_output = layers.round(duration_predictor_output) duration_predictor_output = layers.round(duration_predictor_output)
output = self.LR(x, duration_predictor_output, alpha) output = self.LR(x, duration_predictor_output, alpha)
mel_pos = dg.to_variable([i+1 for i in range(output.shape[1])]) mel_pos = dg.to_variable(np.arange(1, output.shape[1]+1))
mel_pos = layers.unsqueeze(mel_pos, [0])
return output, mel_pos return output, mel_pos
class DurationPredictor(dg.Layer): class DurationPredictor(dg.Layer):

View File

@ -1,11 +1,11 @@
from utils import *
from modules import FFTBlock, LengthRegulator
import paddle.fluid.dygraph as dg import paddle.fluid.dygraph as dg
import paddle.fluid as fluid import paddle.fluid as fluid
from parakeet.g2p.text.symbols import symbols from parakeet.g2p.text.symbols import symbols
from parakeet.modules.utils import * from parakeet.modules.utils import *
from parakeet.modules.post_convnet import PostConvNet from parakeet.modules.post_convnet import PostConvNet
from parakeet.modules.layers import Linear from parakeet.modules.layers import Linear
from utils import *
from modules import FFTBlock, LengthRegulator
class Encoder(dg.Layer): class Encoder(dg.Layer):
def __init__(self, def __init__(self,
@ -203,8 +203,7 @@ class FastSpeech(dg.Layer):
return mel_output, mel_output_postnet, duration_predictor_output, enc_slf_attn_list, dec_slf_attn_list return mel_output, mel_output_postnet, duration_predictor_output, enc_slf_attn_list, dec_slf_attn_list
else: else:
length_regulator_output, decoder_pos = self.length_regulator(encoder_output, alpha=alpha) length_regulator_output, decoder_pos = self.length_regulator(encoder_output, alpha=alpha)
decoder_output = self.decoder(length_regulator_output, decoder_pos) decoder_output, _ = self.decoder(length_regulator_output, decoder_pos)
mel_output = self.mel_linear(decoder_output) mel_output = self.mel_linear(decoder_output)
mel_output_postnet = self.postnet(mel_output) + mel_output mel_output_postnet = self.postnet(mel_output) + mel_output

View File

@ -50,6 +50,9 @@ def add_config_options_to_parser(parser):
help="the dropout in network.") help="the dropout in network.")
parser.add_argument('--transformer_head', type=int, default=4, parser.add_argument('--transformer_head', type=int, default=4,
help="the attention head num of transformerTTS.") help="the attention head num of transformerTTS.")
parser.add_argument('--alpha', type=float, default=1.0,
help="the hyperparameter to determine the length of the expanded sequence\
mel, thereby controlling the voice speed.")
parser.add_argument('--hidden_size', type=int, default=256, parser.add_argument('--hidden_size', type=int, default=256,
help="the hidden size in model of transformerTTS.") help="the hidden size in model of transformerTTS.")
@ -68,6 +71,8 @@ def add_config_options_to_parser(parser):
help="the learning rate for training.") help="the learning rate for training.")
parser.add_argument('--save_step', type=int, default=500, parser.add_argument('--save_step', type=int, default=500,
help="checkpointing interval during training.") help="checkpointing interval during training.")
parser.add_argument('--fastspeech_step', type=int, default=160000,
help="Global step to restore checkpoint of fastspeech.")
parser.add_argument('--use_gpu', type=bool, default=True, parser.add_argument('--use_gpu', type=bool, default=True,
help="use gpu or not during training.") help="use gpu or not during training.")
parser.add_argument('--use_data_parallel', type=bool, default=False, parser.add_argument('--use_data_parallel', type=bool, default=False,

View File

@ -0,0 +1,76 @@
import os
from tensorboardX import SummaryWriter
from collections import OrderedDict
import jsonargparse
from parse import add_config_options_to_parser
from pprint import pprint
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
from parakeet.g2p.en import text_to_sequence
from parakeet import audio
from network import FastSpeech
def load_checkpoint(step, model_path):
model_dict, _ = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
new_state_dict = OrderedDict()
for param in model_dict:
if param.startswith('_layers.'):
new_state_dict[param[8:]] = model_dict[param]
else:
new_state_dict[param] = model_dict[param]
return new_state_dict
def synthesis(text_input, cfg):
place = (fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace())
# tensorboard
if not os.path.exists(cfg.log_dir):
os.mkdir(cfg.log_dir)
path = os.path.join(cfg.log_dir,'synthesis')
writer = SummaryWriter(path)
with dg.guard(place):
model = FastSpeech(cfg)
model.set_dict(load_checkpoint(str(cfg.fastspeech_step), os.path.join(cfg.checkpoint_path, "fastspeech")))
model.eval()
text = np.asarray(text_to_sequence(text_input))
text = fluid.layers.unsqueeze(dg.to_variable(text),[0])
pos_text = np.arange(1, text.shape[1]+1)
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text),[0])
mel_output, mel_output_postnet = model(text, pos_text, alpha=cfg.alpha)
_ljspeech_processor = audio.AudioProcessor(
sample_rate=cfg.audio.sr,
num_mels=cfg.audio.num_mels,
min_level_db=cfg.audio.min_level_db,
ref_level_db=cfg.audio.ref_level_db,
n_fft=cfg.audio.n_fft,
win_length= cfg.audio.win_length,
hop_length= cfg.audio.hop_length,
power=cfg.audio.power,
preemphasis=cfg.audio.preemphasis,
signal_norm=True,
symmetric_norm=False,
max_norm=1.,
mel_fmin=0,
mel_fmax=None,
clip_norm=True,
griffin_lim_iters=60,
do_trim_silence=False,
sound_norm=False)
mel_output_postnet = fluid.layers.transpose(fluid.layers.squeeze(mel_output_postnet,[0]), [1,0])
wav = _ljspeech_processor.inv_melspectrogram(mel_output_postnet.numpy())
writer.add_audio(text_input, wav, 0, cfg.audio.sr)
print("Synthesis completed !!!")
writer.close()
if __name__ == '__main__':
parser = jsonargparse.ArgumentParser(description="Synthesis model", formatter_class='default_argparse')
add_config_options_to_parser(parser)
cfg = parser.parse_args('-c ./config/synthesis.yaml'.split())
synthesis("Transformer model is so fast!", cfg)

View File

@ -5,34 +5,28 @@ import time
import math import math
import jsonargparse import jsonargparse
from pathlib import Path from pathlib import Path
from parse import add_config_options_to_parser
from pprint import pprint
from tqdm import tqdm from tqdm import tqdm
from collections import OrderedDict
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter
import paddle.fluid.dygraph as dg import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
import paddle.fluid as fluid import paddle.fluid as fluid
from parse import add_config_options_to_parser from parakeet.models.dataloader.ljspeech import LJSpeechLoader
from pprint import pprint from parakeet.models.transformerTTS.network import TransformerTTS
from network import FastSpeech from network import FastSpeech
from utils import get_alignment from utils import get_alignment
from parakeet.models.dataloader.jlspeech import LJSpeechLoader
from parakeet.models.transformerTTS.network import TransformerTTS
class MyDataParallel(dg.parallel.DataParallel): def load_checkpoint(step, model_path):
""" model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
A data parallel proxy for model. new_state_dict = OrderedDict()
""" for param in model_dict:
if param.startswith('_layers.'):
def __init__(self, layers, strategy): new_state_dict[param[8:]] = model_dict[param]
super(MyDataParallel, self).__init__(layers, strategy)
def __getattr__(self, key):
if key in self.__dict__:
return object.__getattribute__(self, key)
elif key is "_layers":
return object.__getattribute__(self, "_sub_layers")["_layers"]
else: else:
return getattr( new_state_dict[param] = model_dict[param]
object.__getattribute__(self, "_sub_layers")["_layers"], key) return new_state_dict, opti_dict
def main(cfg): def main(cfg):
@ -57,8 +51,7 @@ def main(cfg):
with dg.guard(place): with dg.guard(place):
with fluid.unique_name.guard(): with fluid.unique_name.guard():
transformerTTS = TransformerTTS(cfg) transformerTTS = TransformerTTS(cfg)
model_path = os.path.join(cfg.transtts_path, "transformer") model_dict, _ = load_checkpoint(str(cfg.transformer_step), os.path.join(cfg.transtts_path, "transformer"))
model_dict, _ = fluid.dygraph.load_dygraph(os.path.join(model_path, str(cfg.transformer_step)))
transformerTTS.set_dict(model_dict) transformerTTS.set_dict(model_dict)
transformerTTS.eval() transformerTTS.eval()
@ -67,27 +60,29 @@ def main(cfg):
model.train() model.train()
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(cfg.warm_up_step *( cfg.lr ** 2)), cfg.warm_up_step), optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(cfg.warm_up_step *( cfg.lr ** 2)), cfg.warm_up_step),
parameter_list=model.parameters()) parameter_list=model.parameters())
reader = LJSpeechLoader(cfg, nranks, local_rank).reader() reader = LJSpeechLoader(cfg, nranks, local_rank, shuffle=True).reader()
if cfg.checkpoint_path is not None: if cfg.checkpoint_path is not None:
model_dict, opti_dict = fluid.dygraph.load_dygraph(cfg.checkpoint_path) model_dict, opti_dict = load_checkpoint(str(cfg.fastspeech_step), os.path.join(cfg.checkpoint_path, "fastspeech"))
model.set_dict(model_dict) model.set_dict(model_dict)
optimizer.set_dict(opti_dict) optimizer.set_dict(opti_dict)
global_step = cfg.fastspeech_step
print("load checkpoint!!!") print("load checkpoint!!!")
if cfg.use_data_parallel: if cfg.use_data_parallel:
strategy = dg.parallel.prepare_context() strategy = dg.parallel.prepare_context()
model = MyDataParallel(model, strategy) model = fluid.dygraph.parallel.DataParallel(model, strategy)
for epoch in range(cfg.epochs): for epoch in range(cfg.epochs):
pbar = tqdm(reader) pbar = tqdm(reader)
for i, data in enumerate(pbar): for i, data in enumerate(pbar):
pbar.set_description('Processing at epoch %d'%epoch) pbar.set_description('Processing at epoch %d'%epoch)
character, mel, mel_input, pos_text, pos_mel, text_length = data character, mel, mel_input, pos_text, pos_mel, text_length, mel_lens = data
_, _, attn_probs, _, _, _ = transformerTTS(character, mel_input, pos_text, pos_mel) _, _, attn_probs, _, _, _ = transformerTTS(character, mel_input, pos_text, pos_mel)
alignment = dg.to_variable(get_alignment(attn_probs, cfg.transformer_head)).astype(np.float32) alignment = dg.to_variable(get_alignment(attn_probs, mel_lens, cfg.transformer_head)).astype(np.float32)
global_step += 1 global_step += 1
#Forward #Forward
@ -102,7 +97,6 @@ def main(cfg):
total_loss = mel_loss + mel_postnet_loss + duration_loss total_loss = mel_loss + mel_postnet_loss + duration_loss
if local_rank==0: if local_rank==0:
#print('epoch:{}, step:{}, mel_loss:{}, mel_postnet_loss:{}, duration_loss:{}'.format(epoch, global_step, mel_loss.numpy(), mel_postnet_loss.numpy(), duration_loss.numpy()))
writer.add_scalar('mel_loss', mel_loss.numpy(), global_step) writer.add_scalar('mel_loss', mel_loss.numpy(), global_step)
writer.add_scalar('post_mel_loss', mel_postnet_loss.numpy(), global_step) writer.add_scalar('post_mel_loss', mel_postnet_loss.numpy(), global_step)
writer.add_scalar('duration_loss', duration_loss.numpy(), global_step) writer.add_scalar('duration_loss', duration_loss.numpy(), global_step)

View File

@ -1,9 +1,10 @@
import numpy as np import numpy as np
def get_alignment(attn_probs, n_head): def get_alignment(attn_probs, mel_lens, n_head):
max_F = 0 max_F = 0
assert attn_probs[0].shape[0] % n_head == 0 assert attn_probs[0].shape[0] % n_head == 0
batch_size = int(attn_probs[0].shape[0] // n_head) batch_size = int(attn_probs[0].shape[0] // n_head)
#max_attn = attn_probs[0].numpy()[0,batch_size]
for i in range(len(attn_probs)): for i in range(len(attn_probs)):
multi_attn = attn_probs[i].numpy() multi_attn = attn_probs[i].numpy()
for j in range(n_head): for j in range(n_head):
@ -12,7 +13,7 @@ def get_alignment(attn_probs, n_head):
if max_F < F: if max_F < F:
max_F = F max_F = F
max_attn = attn max_attn = attn
alignment = compute_duration(max_attn) alignment = compute_duration(max_attn, mel_lens)
return alignment return alignment
def score_F(attn): def score_F(attn):
@ -20,11 +21,12 @@ def score_F(attn):
mean = np.mean(max) mean = np.mean(max)
return mean return mean
def compute_duration(attn): def compute_duration(attn, mel_lens):
alignment = np.zeros([attn.shape[0],attn.shape[2]]) alignment = np.zeros([attn.shape[0],attn.shape[2]])
mel_lens = mel_lens.numpy()
for i in range(attn.shape[0]): for i in range(attn.shape[0]):
for j in range(attn.shape[1]): for j in range(mel_lens[i]):
max_index = attn[i,j].tolist().index(attn[i,j].max()) max_index = np.argmax(attn[i,j])
alignment[i,max_index] += 1 alignment[i,max_index] += 1
return alignment return alignment

View File

@ -24,11 +24,12 @@ save_step: 1000
image_step: 2000 image_step: 2000
use_gpu: True use_gpu: True
use_data_parallel: False use_data_parallel: False
stop_token: False
data_path: ../../../dataset/LJSpeech-1.1 data_path: ../../../dataset/LJSpeech-1.1
save_path: ./checkpoint save_path: ./checkpoint
log_dir: ./log log_dir: ./log
#checkpoint_path: ./checkpoint #checkpoint_path: ./checkpoint
#transformer_step: 70000 #ransformer_step: 97000

View File

@ -49,6 +49,7 @@ class EncoderPrenet(dg.Layer):
x = layers.dropout(layers.relu(batch_norm(conv(x))), 0.2) x = layers.dropout(layers.relu(batch_norm(conv(x))), 0.2)
x = layers.transpose(x,[0,2,1]) #(N,T,C) x = layers.transpose(x,[0,2,1]) #(N,T,C)
x = self.projection(x) x = self.projection(x)
return x return x
class CBHG(dg.Layer): class CBHG(dg.Layer):

View File

@ -44,13 +44,15 @@ def add_config_options_to_parser(parser):
parser.add_argument('--max_len', type=int, default=400, parser.add_argument('--max_len', type=int, default=400,
help="The max length of audio when synthsis.") help="The max length of audio when synthsis.")
parser.add_argument('--transformer_step', type=int, default=160000, parser.add_argument('--transformer_step', type=int, default=160000,
help="Global step to restore checkpoint of transformer in synthesis.") help="Global step to restore checkpoint of transformer.")
parser.add_argument('--postnet_step', type=int, default=100000, parser.add_argument('--postnet_step', type=int, default=90000,
help="Global step to restore checkpoint of postnet in synthesis.") help="Global step to restore checkpoint of postnet.")
parser.add_argument('--use_gpu', type=bool, default=True, parser.add_argument('--use_gpu', type=bool, default=True,
help="use gpu or not during training.") help="use gpu or not during training.")
parser.add_argument('--use_data_parallel', type=bool, default=False, parser.add_argument('--use_data_parallel', type=bool, default=False,
help="use data parallel or not during training.") help="use data parallel or not during training.")
parser.add_argument('--stop_token', type=bool, default=False,
help="use stop token loss in network or not.")
parser.add_argument('--data_path', type=str, default='./dataset/LJSpeech-1.1', parser.add_argument('--data_path', type=str, default='./dataset/LJSpeech-1.1',
help="the path of dataset.") help="the path of dataset.")

View File

@ -1,123 +0,0 @@
from pathlib import Path
import numpy as np
import pandas as pd
import librosa
from parakeet import g2p
from parakeet import audio
from parakeet.data.sampler import SequentialSampler, RandomSampler, BatchSampler
from parakeet.data.dataset import Dataset
from parakeet.data.datacargo import DataCargo
from parakeet.data.batch import TextIDBatcher, SpecBatcher
_ljspeech_processor = audio.AudioProcessor(
sample_rate=22050,
num_mels=80,
min_level_db=-100,
ref_level_db=20,
n_fft=2048,
win_length= int(22050 * 0.05),
hop_length= int(22050 * 0.0125),
power=1.2,
preemphasis=0.97,
signal_norm=True,
symmetric_norm=False,
max_norm=1.,
mel_fmin=0,
mel_fmax=None,
clip_norm=True,
griffin_lim_iters=60,
do_trim_silence=False,
sound_norm=False)
class LJSpeech(Dataset):
def __init__(self, root):
super(LJSpeech, self).__init__()
assert isinstance(root, (str, Path)), "root should be a string or Path object"
self.root = root if isinstance(root, Path) else Path(root)
self.metadata = self._prepare_metadata()
def _prepare_metadata(self):
csv_path = self.root.joinpath("metadata.csv")
metadata = pd.read_csv(csv_path, sep="|", header=None, quoting=3,
names=["fname", "raw_text", "normalized_text"])
return metadata
def _get_example(self, metadatum):
"""All the code for generating an Example from a metadatum. If you want a
different preprocessing pipeline, you can override this method.
This method may require several processor, each of which has a lot of options.
In this case, you'd better pass a composed transform and pass it to the init
method.
"""
fname, raw_text, normalized_text = metadatum
wav_path = self.root.joinpath("wavs", fname + ".wav")
# load -> trim -> preemphasis -> stft -> magnitude -> mel_scale -> logscale -> normalize
wav = _ljspeech_processor.load_wav(str(wav_path))
mag = _ljspeech_processor.spectrogram(wav).astype(np.float32)
mel = _ljspeech_processor.melspectrogram(wav).astype(np.float32)
phonemes = np.array(g2p.en.text_to_sequence(normalized_text), dtype=np.int64)
return (mag, mel, phonemes) # maybe we need to implement it as a map in the future
def __getitem__(self, index):
metadatum = self.metadata.iloc[index]
example = self._get_example(metadatum)
return example
def __iter__(self):
for i in range(len(self)):
yield self[i]
def __len__(self):
return len(self.metadata)
def batch_examples(batch):
texts = []
mels = []
mel_inputs = []
text_lens = []
pos_texts = []
pos_mels = []
for data in batch:
_, mel, text = data
mel_inputs.append(np.concatenate([np.zeros([mel.shape[0], 1], np.float32), mel[:,:-1]], axis=-1))
text_lens.append(len(text))
pos_texts.append(np.arange(1, len(text) + 1))
pos_mels.append(np.arange(1, mel.shape[1] + 1))
mels.append(mel)
texts.append(text)
# Sort by text_len in descending order
texts = [i for i,_ in sorted(zip(texts, text_lens), key=lambda x: x[1], reverse=True)]
mels = [i for i,_ in sorted(zip(mels, text_lens), key=lambda x: x[1], reverse=True)]
mel_inputs = [i for i,_ in sorted(zip(mel_inputs, text_lens), key=lambda x: x[1], reverse=True)]
pos_texts = [i for i,_ in sorted(zip(pos_texts, text_lens), key=lambda x: x[1], reverse=True)]
pos_mels = [i for i,_ in sorted(zip(pos_mels, text_lens), key=lambda x: x[1], reverse=True)]
text_lens = sorted(text_lens, reverse=True)
# Pad sequence with largest len of the batch
texts = TextIDBatcher(pad_id=0)(texts)
pos_texts = TextIDBatcher(pad_id=0)(pos_texts)
pos_mels = TextIDBatcher(pad_id=0)(pos_mels)
mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1))
mel_inputs = np.transpose(SpecBatcher(pad_value=0.)(mel_inputs), axes=(0,2,1))
return (texts, mels, mel_inputs, pos_texts, pos_mels, np.array(text_lens))
def batch_examples_vocoder(batch):
mels=[]
mags=[]
for data in batch:
mag, mel, _ = data
mels.append(mel)
mags.append(mag)
mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1))
mags = np.transpose(SpecBatcher(pad_value=0.)(mags), axes=(0,2,1))
return (mels, mags)

View File

@ -7,15 +7,22 @@ from tqdm import tqdm
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.dygraph as dg import paddle.fluid.dygraph as dg
from preprocess import _ljspeech_processor
from pathlib import Path from pathlib import Path
import jsonargparse import jsonargparse
from parse import add_config_options_to_parser from parse import add_config_options_to_parser
from pprint import pprint from pprint import pprint
from collections import OrderedDict
from parakeet import audio
def load_checkpoint(step, model_path): def load_checkpoint(step, model_path):
model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step)) model_dict, _ = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
return model_dict new_state_dict = OrderedDict()
for param in model_dict:
if param.startswith('_layers.'):
new_state_dict[param[8:]] = model_dict[param]
else:
new_state_dict[param] = model_dict[param]
return new_state_dict
def synthesis(text_input, cfg): def synthesis(text_input, cfg):
place = (fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()) place = (fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace())
@ -30,7 +37,7 @@ def synthesis(text_input, cfg):
with dg.guard(place): with dg.guard(place):
with fluid.unique_name.guard(): with fluid.unique_name.guard():
model = TransformerTTS(cfg) model = TransformerTTS(cfg)
model.set_dict(load_checkpoint(str(cfg.transformer_step), os.path.join(cfg.checkpoint_path, "transformer"))) model.set_dict(load_checkpoint(str(cfg.transformer_step), os.path.join(cfg.checkpoint_path, "nostop_token/transformer")))
model.eval() model.eval()
with fluid.unique_name.guard(): with fluid.unique_name.guard():
@ -54,11 +61,32 @@ def synthesis(text_input, cfg):
mel_input = fluid.layers.concat([mel_input, postnet_pred[:,-1:,:]], axis=1) mel_input = fluid.layers.concat([mel_input, postnet_pred[:,-1:,:]], axis=1)
mag_pred = model_postnet(postnet_pred) mag_pred = model_postnet(postnet_pred)
_ljspeech_processor = audio.AudioProcessor(
sample_rate=cfg.audio.sr,
num_mels=cfg.audio.num_mels,
min_level_db=cfg.audio.min_level_db,
ref_level_db=cfg.audio.ref_level_db,
n_fft=cfg.audio.n_fft,
win_length= cfg.audio.win_length,
hop_length= cfg.audio.hop_length,
power=cfg.audio.power,
preemphasis=cfg.audio.preemphasis,
signal_norm=True,
symmetric_norm=False,
max_norm=1.,
mel_fmin=0,
mel_fmax=None,
clip_norm=True,
griffin_lim_iters=60,
do_trim_silence=False,
sound_norm=False)
wav = _ljspeech_processor.inv_spectrogram(fluid.layers.transpose(fluid.layers.squeeze(mag_pred,[0]), [1,0]).numpy()) wav = _ljspeech_processor.inv_spectrogram(fluid.layers.transpose(fluid.layers.squeeze(mag_pred,[0]), [1,0]).numpy())
writer.add_audio(text_input, wav, 0, cfg.audio.sr) writer.add_audio(text_input, wav, 0, cfg.audio.sr)
if not os.path.exists(cfg.sample_path): if not os.path.exists(cfg.sample_path):
os.mkdir(cfg.sample_path) os.mkdir(cfg.sample_path)
write(os.path.join(cfg.sample_path,'test.wav'), cfg.audio.sr, wav) write(os.path.join(cfg.sample_path,'test.wav'), cfg.audio.sr, wav)
writer.close()
if __name__ == '__main__': if __name__ == '__main__':
parser = jsonargparse.ArgumentParser(description="Synthesis model", formatter_class='default_argparse') parser = jsonargparse.ArgumentParser(description="Synthesis model", formatter_class='default_argparse')

View File

@ -1,33 +1,23 @@
from network import *
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter
import os import os
from tqdm import tqdm from tqdm import tqdm
from pathlib import Path from pathlib import Path
from collections import OrderedDict
import jsonargparse import jsonargparse
from parse import add_config_options_to_parser from parse import add_config_options_to_parser
from pprint import pprint from pprint import pprint
from parakeet.models.dataloader.jlspeech import LJSpeechLoader from parakeet.models.dataloader.ljspeech import LJSpeechLoader
from network import *
class MyDataParallel(dg.parallel.DataParallel):
"""
A data parallel proxy for model.
"""
def __init__(self, layers, strategy):
super(MyDataParallel, self).__init__(layers, strategy)
def __getattr__(self, key):
if key in self.__dict__:
return object.__getattribute__(self, key)
elif key is "_layers":
return object.__getattribute__(self, "_sub_layers")["_layers"]
else:
return getattr(
object.__getattribute__(self, "_sub_layers")["_layers"], key)
def load_checkpoint(step, model_path): def load_checkpoint(step, model_path):
model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step)) model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
return model_dict, opti_dict new_state_dict = OrderedDict()
for param in model_dict:
if param.startswith('_layers.'):
new_state_dict[param[8:]] = model_dict[param]
else:
new_state_dict[param] = model_dict[param]
return new_state_dict, opti_dict
def main(cfg): def main(cfg):
@ -66,7 +56,7 @@ def main(cfg):
if cfg.use_data_parallel: if cfg.use_data_parallel:
strategy = dg.parallel.prepare_context() strategy = dg.parallel.prepare_context()
model = MyDataParallel(model, strategy) model = fluid.dygraph.parallel.DataParallel(model, strategy)
reader = LJSpeechLoader(cfg, nranks, local_rank, is_vocoder=True).reader() reader = LJSpeechLoader(cfg, nranks, local_rank, is_vocoder=True).reader()

View File

@ -1,46 +1,33 @@
import os import os
from tqdm import tqdm from tqdm import tqdm
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers
from network import *
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter
from pathlib import Path from pathlib import Path
from collections import OrderedDict
import jsonargparse import jsonargparse
from parse import add_config_options_to_parser from parse import add_config_options_to_parser
from pprint import pprint from pprint import pprint
from matplotlib import cm from matplotlib import cm
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers
from parakeet.modules.utils import cross_entropy from parakeet.modules.utils import cross_entropy
from parakeet.models.dataloader.jlspeech import LJSpeechLoader from parakeet.models.dataloader.ljspeech import LJSpeechLoader
from network import *
class MyDataParallel(dg.parallel.DataParallel):
"""
A data parallel proxy for model.
"""
def __init__(self, layers, strategy):
super(MyDataParallel, self).__init__(layers, strategy)
def __getattr__(self, key):
if key in self.__dict__:
return object.__getattribute__(self, key)
elif key is "_layers":
return object.__getattribute__(self, "_sub_layers")["_layers"]
else:
return getattr(
object.__getattribute__(self, "_sub_layers")["_layers"], key)
def load_checkpoint(step, model_path): def load_checkpoint(step, model_path):
model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step)) model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
return model_dict, opti_dict new_state_dict = OrderedDict()
for param in model_dict:
if param.startswith('_layers.'):
new_state_dict[param[8:]] = model_dict[param]
else:
new_state_dict[param] = model_dict[param]
return new_state_dict, opti_dict
def main(cfg): def main(cfg):
local_rank = dg.parallel.Env().local_rank if cfg.use_data_parallel else 0 local_rank = dg.parallel.Env().local_rank if cfg.use_data_parallel else 0
nranks = dg.parallel.Env().nranks if cfg.use_data_parallel else 1 nranks = dg.parallel.Env().nranks if cfg.use_data_parallel else 1
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
if local_rank == 0: if local_rank == 0:
# Print the whole config setting. # Print the whole config setting.
pprint(jsonargparse.namespace_to_dict(cfg)) pprint(jsonargparse.namespace_to_dict(cfg))
@ -74,28 +61,27 @@ def main(cfg):
if cfg.use_data_parallel: if cfg.use_data_parallel:
strategy = dg.parallel.prepare_context() strategy = dg.parallel.prepare_context()
model = MyDataParallel(model, strategy) model = fluid.dygraph.parallel.DataParallel(model, strategy)
for epoch in range(cfg.epochs): for epoch in range(cfg.epochs):
pbar = tqdm(reader) pbar = tqdm(reader)
for i, data in enumerate(pbar): for i, data in enumerate(pbar):
pbar.set_description('Processing at epoch %d'%epoch) pbar.set_description('Processing at epoch %d'%epoch)
character, mel, mel_input, pos_text, pos_mel, text_length = data character, mel, mel_input, pos_text, pos_mel, text_length, _ = data
global_step += 1 global_step += 1
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(character, mel_input, pos_text, pos_mel) mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(character, mel_input, pos_text, pos_mel)
label = (pos_mel == 0).astype(np.float32) label = (pos_mel == 0).astype(np.float32)
#label = np.zeros(stop_preds.shape).astype(np.float32)
#text_length = text_length.numpy()
#for i in range(label.shape[0]):
# label[i][text_length[i] - 1] = 1
mel_loss = layers.mean(layers.abs(layers.elementwise_sub(mel_pred, mel))) mel_loss = layers.mean(layers.abs(layers.elementwise_sub(mel_pred, mel)))
post_mel_loss = layers.mean(layers.abs(layers.elementwise_sub(postnet_pred, mel))) post_mel_loss = layers.mean(layers.abs(layers.elementwise_sub(postnet_pred, mel)))
loss = mel_loss + post_mel_loss
# Note: When used stop token loss the learning did not work.
if cfg.stop_token:
stop_loss = cross_entropy(stop_preds, label) stop_loss = cross_entropy(stop_preds, label)
loss = mel_loss + post_mel_loss + stop_loss loss = loss + stop_loss
if local_rank==0: if local_rank==0:
writer.add_scalars('training_loss', { writer.add_scalars('training_loss', {