1. fix typos;

2. add tensorboardX into install requirements.
This commit is contained in:
iclementine 2020-12-19 20:08:25 +08:00
parent aa205fd7bb
commit f31643b33c
3 changed files with 10 additions and 9 deletions

View File

@ -24,7 +24,7 @@ def fold(x, n_group):
Returns
---------
Tensor : [shape=(`*, time_steps // n_group, group)]
Tensor : [shape=(\*, time_steps // n_group, group)]
Folded tensor.
"""
*spatial_shape, time_steps = x.shape
@ -230,7 +230,7 @@ class ResidualBlock(nn.Layer):
res : Tensor [shape=(batch_size, channel, 1, width)]
A row of the the residual output.
res : Tensor [shape=(batch_size, channel, 1, width)]
skip : Tensor [shape=(batch_size, channel, 1, width)]
A row of the skip output.
"""
x_row_in = x_row
@ -349,7 +349,7 @@ class ResidualNet(nn.LayerList):
res : Tensor [shape=(batch_size, channel, 1, width)]
A row of the the residual output.
res : Tensor [shape=(batch_size, channel, 1, width)]
skip : Tensor [shape=(batch_size, channel, 1, width)]
A row of the skip output.
"""
skip_connections = []
@ -364,8 +364,8 @@ class Flow(nn.Layer):
"""A bijection (Reversable layer) that transform a density of latent
variables p(Z) into a complex data distribution p(X).
It's an auto regressive flow. The `forward` method implements the
probability density estimation. The `inverse` method implements the
It's an auto regressive flow. The ``forward`` method implements the
probability density estimation. The ``inverse`` method implements the
sampling.
Parameters

View File

@ -350,7 +350,7 @@ class ResidualNet(nn.LayerList):
def start_sequence(self):
"""Prepare the ResidualNet to generate a new sequence. This method
should be called before starting calling `add_input` multiple times.
should be called before starting calling ``add_input`` multiple times.
"""
for block in self:
block.start_sequence()
@ -372,7 +372,7 @@ class ResidualNet(nn.LayerList):
Returns
----------
Tensor [shape=(B, C)]
T he skip connection for a step. This output is accumulated with
The skip connection for a step. This output is accumulated with
that of other ResidualBlocks.
"""
for i, func in enumerate(self):
@ -514,7 +514,7 @@ class WaveNet(nn.Layer):
Returns
--------
Tensor: [shape=(B, C_output)]
A steo of the parameters of the output distributions.
A step of the parameters of the output distributions.
"""
# Causal Conv
if self.loss_type == "softmax":
@ -714,7 +714,7 @@ class WaveNet(nn.Layer):
Parameters
----------
y : Tensor [shape=(B, T, C_output)]
The parameterd of the output distribution.
The parameters of the output distribution.
t : Tensor [shape=(B, T)]
The target audio.

View File

@ -69,6 +69,7 @@ setup_info = dict(
'g2p_en',
'g2pM',
'yacs',
'tensorboardX',
],
extras_require={
'doc': ["sphinx", "sphinx-rtd-theme", "numpydoc"],