1. fix typos;
2. add tensorboardX into install requirements.
This commit is contained in:
parent
aa205fd7bb
commit
f31643b33c
|
@ -24,7 +24,7 @@ def fold(x, n_group):
|
|||
|
||||
Returns
|
||||
---------
|
||||
Tensor : [shape=(`*, time_steps // n_group, group)]
|
||||
Tensor : [shape=(\*, time_steps // n_group, group)]
|
||||
Folded tensor.
|
||||
"""
|
||||
*spatial_shape, time_steps = x.shape
|
||||
|
@ -230,7 +230,7 @@ class ResidualBlock(nn.Layer):
|
|||
res : Tensor [shape=(batch_size, channel, 1, width)]
|
||||
A row of the the residual output.
|
||||
|
||||
res : Tensor [shape=(batch_size, channel, 1, width)]
|
||||
skip : Tensor [shape=(batch_size, channel, 1, width)]
|
||||
A row of the skip output.
|
||||
"""
|
||||
x_row_in = x_row
|
||||
|
@ -349,7 +349,7 @@ class ResidualNet(nn.LayerList):
|
|||
res : Tensor [shape=(batch_size, channel, 1, width)]
|
||||
A row of the the residual output.
|
||||
|
||||
res : Tensor [shape=(batch_size, channel, 1, width)]
|
||||
skip : Tensor [shape=(batch_size, channel, 1, width)]
|
||||
A row of the skip output.
|
||||
"""
|
||||
skip_connections = []
|
||||
|
@ -364,8 +364,8 @@ class Flow(nn.Layer):
|
|||
"""A bijection (Reversable layer) that transform a density of latent
|
||||
variables p(Z) into a complex data distribution p(X).
|
||||
|
||||
It's an auto regressive flow. The `forward` method implements the
|
||||
probability density estimation. The `inverse` method implements the
|
||||
It's an auto regressive flow. The ``forward`` method implements the
|
||||
probability density estimation. The ``inverse`` method implements the
|
||||
sampling.
|
||||
|
||||
Parameters
|
||||
|
|
|
@ -350,7 +350,7 @@ class ResidualNet(nn.LayerList):
|
|||
|
||||
def start_sequence(self):
|
||||
"""Prepare the ResidualNet to generate a new sequence. This method
|
||||
should be called before starting calling `add_input` multiple times.
|
||||
should be called before starting calling ``add_input`` multiple times.
|
||||
"""
|
||||
for block in self:
|
||||
block.start_sequence()
|
||||
|
@ -372,7 +372,7 @@ class ResidualNet(nn.LayerList):
|
|||
Returns
|
||||
----------
|
||||
Tensor [shape=(B, C)]
|
||||
T he skip connection for a step. This output is accumulated with
|
||||
The skip connection for a step. This output is accumulated with
|
||||
that of other ResidualBlocks.
|
||||
"""
|
||||
for i, func in enumerate(self):
|
||||
|
@ -514,7 +514,7 @@ class WaveNet(nn.Layer):
|
|||
Returns
|
||||
--------
|
||||
Tensor: [shape=(B, C_output)]
|
||||
A steo of the parameters of the output distributions.
|
||||
A step of the parameters of the output distributions.
|
||||
"""
|
||||
# Causal Conv
|
||||
if self.loss_type == "softmax":
|
||||
|
@ -714,7 +714,7 @@ class WaveNet(nn.Layer):
|
|||
Parameters
|
||||
----------
|
||||
y : Tensor [shape=(B, T, C_output)]
|
||||
The parameterd of the output distribution.
|
||||
The parameters of the output distribution.
|
||||
|
||||
t : Tensor [shape=(B, T)]
|
||||
The target audio.
|
||||
|
|
Loading…
Reference in New Issue