1. fix typos;

2. add tensorboardX into install requirements.
This commit is contained in:
iclementine 2020-12-19 20:08:25 +08:00
parent aa205fd7bb
commit f31643b33c
3 changed files with 10 additions and 9 deletions

View File

@ -24,7 +24,7 @@ def fold(x, n_group):
Returns Returns
--------- ---------
Tensor : [shape=(`*, time_steps // n_group, group)] Tensor : [shape=(\*, time_steps // n_group, group)]
Folded tensor. Folded tensor.
""" """
*spatial_shape, time_steps = x.shape *spatial_shape, time_steps = x.shape
@ -230,7 +230,7 @@ class ResidualBlock(nn.Layer):
res : Tensor [shape=(batch_size, channel, 1, width)] res : Tensor [shape=(batch_size, channel, 1, width)]
A row of the the residual output. A row of the the residual output.
res : Tensor [shape=(batch_size, channel, 1, width)] skip : Tensor [shape=(batch_size, channel, 1, width)]
A row of the skip output. A row of the skip output.
""" """
x_row_in = x_row x_row_in = x_row
@ -349,7 +349,7 @@ class ResidualNet(nn.LayerList):
res : Tensor [shape=(batch_size, channel, 1, width)] res : Tensor [shape=(batch_size, channel, 1, width)]
A row of the the residual output. A row of the the residual output.
res : Tensor [shape=(batch_size, channel, 1, width)] skip : Tensor [shape=(batch_size, channel, 1, width)]
A row of the skip output. A row of the skip output.
""" """
skip_connections = [] skip_connections = []
@ -364,8 +364,8 @@ class Flow(nn.Layer):
"""A bijection (Reversable layer) that transform a density of latent """A bijection (Reversable layer) that transform a density of latent
variables p(Z) into a complex data distribution p(X). variables p(Z) into a complex data distribution p(X).
It's an auto regressive flow. The `forward` method implements the It's an auto regressive flow. The ``forward`` method implements the
probability density estimation. The `inverse` method implements the probability density estimation. The ``inverse`` method implements the
sampling. sampling.
Parameters Parameters

View File

@ -350,7 +350,7 @@ class ResidualNet(nn.LayerList):
def start_sequence(self): def start_sequence(self):
"""Prepare the ResidualNet to generate a new sequence. This method """Prepare the ResidualNet to generate a new sequence. This method
should be called before starting calling `add_input` multiple times. should be called before starting calling ``add_input`` multiple times.
""" """
for block in self: for block in self:
block.start_sequence() block.start_sequence()
@ -372,7 +372,7 @@ class ResidualNet(nn.LayerList):
Returns Returns
---------- ----------
Tensor [shape=(B, C)] Tensor [shape=(B, C)]
T he skip connection for a step. This output is accumulated with The skip connection for a step. This output is accumulated with
that of other ResidualBlocks. that of other ResidualBlocks.
""" """
for i, func in enumerate(self): for i, func in enumerate(self):
@ -514,7 +514,7 @@ class WaveNet(nn.Layer):
Returns Returns
-------- --------
Tensor: [shape=(B, C_output)] Tensor: [shape=(B, C_output)]
A steo of the parameters of the output distributions. A step of the parameters of the output distributions.
""" """
# Causal Conv # Causal Conv
if self.loss_type == "softmax": if self.loss_type == "softmax":
@ -714,7 +714,7 @@ class WaveNet(nn.Layer):
Parameters Parameters
---------- ----------
y : Tensor [shape=(B, T, C_output)] y : Tensor [shape=(B, T, C_output)]
The parameterd of the output distribution. The parameters of the output distribution.
t : Tensor [shape=(B, T)] t : Tensor [shape=(B, T)]
The target audio. The target audio.

View File

@ -69,6 +69,7 @@ setup_info = dict(
'g2p_en', 'g2p_en',
'g2pM', 'g2pM',
'yacs', 'yacs',
'tensorboardX',
], ],
extras_require={ extras_require={
'doc': ["sphinx", "sphinx-rtd-theme", "numpydoc"], 'doc': ["sphinx", "sphinx-rtd-theme", "numpydoc"],