Merge pull request #133 from iclementine/speedyspeech

Add paddle inference demo with speedyspeech & pwg
This commit is contained in:
Hui Zhang 2021-08-03 02:55:59 -05:00 committed by GitHub
commit ffe65c89de
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 106 additions and 5 deletions

View File

@ -0,0 +1,95 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
import numpy as np
from paddle import inference
import soundfile as sf
from frontend import text_analysis
def main():
parser = argparse.ArgumentParser(
description="Paddle Infernce with speedyspeech & parallel wavegan.")
parser.add_argument(
"--inference-dir", type=str, help="dir to save inference models")
parser.add_argument(
"--text",
type=str,
help="text to synthesize, a 'utt_id sentence' pair per line")
parser.add_argument("--output-dir", type=str, help="output dir")
args = parser.parse_args()
speedyspeech_config = inference.Config(
str(Path(args.inference_dir) / "speedyspeech.pdmodel"),
str(Path(args.inference_dir) / "speedyspeech.pdiparams"))
speedyspeech_config.enable_use_gpu(100, 0)
speedyspeech_config.enable_memory_optim()
speedyspeech_predictor = inference.create_predictor(speedyspeech_config)
pwg_config = inference.Config(
str(Path(args.inference_dir) / "pwg.pdmodel"),
str(Path(args.inference_dir) / "pwg.pdiparams"))
pwg_config.enable_use_gpu(100, 0)
pwg_config.enable_memory_optim()
pwg_predictor = inference.create_predictor(pwg_config)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
sentences = []
with open(args.text, 'rt') as f:
for line in f:
utt_id, sentence = line.strip().split()
sentences.append((utt_id, sentence))
for utt_id, sentence in sentences:
phones, tones = text_analysis(sentence)
phones = phones.numpy()
tones = tones.numpy()
input_names = speedyspeech_predictor.get_input_names()
phones_handle = speedyspeech_predictor.get_input_handle(input_names[0])
tones_handle = speedyspeech_predictor.get_input_handle(input_names[1])
phones_handle.reshape(phones.shape)
phones_handle.copy_from_cpu(phones)
tones_handle.reshape(tones.shape)
tones_handle.copy_from_cpu(tones)
speedyspeech_predictor.run()
output_names = speedyspeech_predictor.get_output_names()
output_handle = speedyspeech_predictor.get_output_handle(output_names[
0])
output_data = output_handle.copy_to_cpu()
input_names = pwg_predictor.get_input_names()
mel_handle = pwg_predictor.get_input_handle(input_names[0])
mel_handle.reshape(output_data.shape)
mel_handle.copy_from_cpu(output_data)
pwg_predictor.run()
output_names = pwg_predictor.get_output_names()
output_handle = pwg_predictor.get_output_handle(output_names[0])
wav = output_data = output_handle.copy_to_cpu()
sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=24000)
print(f"{utt_id} done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,5 @@
python inference.py \
--inference-dir=exp/debug/inference \
--text=sentences.txt \
--output-dir=exp/debug/pd_infer_out

View File

@ -403,7 +403,7 @@ class TransformerTTS(nn.Layer):
else:
self.toned = False
# position encoding matrix may be extended later
self.encoder_pe = pe.sinusoid_positional_encoding(1000, d_encoder)
self.encoder_pe = pe.sinusoid_position_encoding(1000, d_encoder)
self.encoder_pe_scalar = self.create_parameter(
[1], attr=I.Constant(1.))
self.encoder = TransformerEncoder(d_encoder, n_heads, d_ffn,
@ -411,7 +411,7 @@ class TransformerTTS(nn.Layer):
# decoder
self.decoder_prenet = MLPPreNet(d_mel, d_prenet, d_decoder, dropout)
self.decoder_pe = pe.sinusoid_positional_encoding(1000, d_decoder)
self.decoder_pe = pe.sinusoid_position_encoding(1000, d_decoder)
self.decoder_pe_scalar = self.create_parameter(
[1], attr=I.Constant(1.))
self.decoder = TransformerDecoder(
@ -467,7 +467,8 @@ class TransformerTTS(nn.Layer):
embed += self.tone_embed(tones)
if embed.shape[1] > self.encoder_pe.shape[0]:
new_T = max(embed.shape[1], self.encoder_pe.shape[0] * 2)
self.encoder_pe = pe.positional_encoding(0, new_T, self.d_encoder)
self.encoder_pe = pe.sinusoid_position_encoding(new_T,
self.d_encoder)
pos_enc = self.encoder_pe[:T_enc, :] # (T, C)
x = embed.scale(math.sqrt(
self.d_encoder)) + pos_enc * self.encoder_pe_scalar
@ -488,7 +489,7 @@ class TransformerTTS(nn.Layer):
# twice its length if needed
if x.shape[1] * self.r > self.decoder_pe.shape[0]:
new_T = max(x.shape[1] * self.r, self.decoder_pe.shape[0] * 2)
self.decoder_pe = pe.sinusoid_positional_encoding(new_T,
self.decoder_pe = pe.sinusoid_position_encoding(new_T,
self.d_decoder)
pos_enc = self.decoder_pe[:T_dec * self.r:self.r, :]
x = x.scale(math.sqrt(