Compare commits

...

34 Commits

Author SHA1 Message Date
Feiyu Chan e14ef0432c
Merge pull request #105 from iclementine/release/v0.2
fix fmax for example/waveflow
2021-04-14 14:42:43 +08:00
chenfeiyu b666b830a5 fix fmax for example/waveflow 2021-04-14 14:38:31 +08:00
Feiyu Chan 66620977ba
Merge pull request #104 from iclementine/release/v0.2
update code for tacotron2
2021-04-13 16:19:09 +08:00
chenfeiyu 9a11dce942 update collate function, data loader not does not convert nested list into numpy array. 2021-04-13 16:17:46 +08:00
Feiyu Chan 1552e34401
Merge pull request #100 from iclementine/release/v0.2
add pretrained models
2021-03-15 15:16:34 +08:00
iclementine ee1a9a04d8 add pretrained models 2021-03-15 15:10:09 +08:00
iclementine 87a76c339c update to 0.2.0 2021-03-10 15:56:34 +08:00
iclementine ea43c3f82a temporarily remove wavenet, version update 2021-03-10 15:53:15 +08:00
iclementine a1aa401d8c Merge branch 'develop' into release/v0.2 2021-03-10 15:40:08 +08:00
Feiyu Chan ba39773b5a
Merge pull request #93 from iclementine/release/v0.2
update to 0.2.0-beta3
2021-02-07 22:46:43 +08:00
chenfeiyu cb3ea54118 update version string 2021-02-07 22:00:03 +08:00
chenfeiyu 4e876e555c Merge branch 'develop' into release/v0.2 2021-02-07 21:59:28 +08:00
Feiyu Chan bdf2f680b7
Merge pull request #91 from zh794390558/patch-5
Update basic.rst
2021-02-05 10:44:53 +08:00
Feiyu Chan 7019dcfe97
Merge pull request #89 from zh794390558/patch-3
Update data_cn.md
2021-02-05 10:43:54 +08:00
Feiyu Chan e2bca531ef
Merge pull request #88 from zh794390558/patch-2
Update data_cn.md
2021-02-05 10:43:13 +08:00
Hui Zhang 8d6b7dc4d0
Update basic.rst 2021-02-02 14:20:10 +08:00
Hui Zhang db63e4096c
Update data_cn.md 2021-02-01 17:19:07 +08:00
Hui Zhang 7b77c9b26c
Update data_cn.md 2021-02-01 17:11:03 +08:00
Feiyu Chan a42838c717
Merge pull request #87 from PaddlePaddle/develop
merge develop: update docs
2021-01-20 18:48:23 +08:00
iclementine c3a9f6d89b version update to 0.2.0beta2 2021-01-19 17:09:19 +08:00
iclementine 5eebbd0716 Merge branch 'develop' into release/v0.2 2021-01-19 17:08:06 +08:00
Feiyu Chan 9f256e325c
Merge pull request #84 from iclementine/release/v0.2
fix a bug when using a method other than forward with DataParallel
2021-01-11 17:28:58 +08:00
chenfeiyu a9f633f489 fix a bug when using a method other than forward with DataParallel 2021-01-11 17:25:28 +08:00
Feiyu Chan 3f1928604a
Merge pull request #81 from iclementine/release/v0.2
fix: the condition to init DataParallel
2021-01-11 17:17:49 +08:00
chenfeiyu bd773744ac fix: the condition to init DataParallel 2021-01-11 17:14:48 +08:00
chenfeiyu 289827c9cf Merge branch 'develop' into release/v0.2 2021-01-11 17:00:35 +08:00
Feiyu Chan 610b8f2cef
Merge pull request #78 from lfchener/develop
fix an encoding problem in windows
2021-01-08 11:04:23 +08:00
Feiyu Chan f7d85e7058
Merge pull request #76 from PaddlePaddle/revert-74-reborn
Revert "bug fix: apply dropout to logits before softmax"
2021-01-07 15:24:18 +08:00
chenfeiyu a5991a8f90 Merge branch 'develop' into release/v0.2 2020-12-31 16:57:36 +08:00
Feiyu Chan df627d6a2e
Merge pull request #73 from PaddlePaddle/develop
add README for transformer_tts, waveflow and wavenet
2020-12-30 15:57:43 +08:00
Feiyu Chan e55ea4555e
Merge pull request #70 from PaddlePaddle/develop
fix the behavior of dropout in eval of tacotron2
2020-12-28 16:35:06 +08:00
chenfeiyu 54003d5ecc Merge branch 'release/v0.2' of https://github.com/PaddlePaddle/Parakeet into release/v0.2 2020-12-21 17:48:08 +08:00
chenfeiyu 80bb465d3c update version str to beta 1 2020-12-21 17:46:39 +08:00
Feiyu Chan 94c8585140
Merge pull request #68 from PaddlePaddle/develop
fix positional encoding naming conflict
2020-12-21 17:44:19 +08:00
15 changed files with 26 additions and 1665 deletions

View File

@ -59,7 +59,6 @@ See [install](https://paddle-parakeet.readthedocs.io/en/latest/install.html) for
Entries to the introduction, and the launch of training and synthsis for different example models:
- [>>> WaveFlow](./examples/waveflow)
- [>>> WaveNet](./examples/wavenet)
- [>>> Transformer TTS](./examples/transformer_tts)
- [>>> Tacotron2](./examples/tacotron2)
@ -70,6 +69,14 @@ Entries to the introduction, and the launch of training and synthsis for differe
Check our [website](https://paddle-parakeet.readthedocs.io/en/latest/demo.html) for audio sampels.
## Pretrained models
Models pretrained on LJSpeech can be downloaded here.
[tacotron2](https://paddlespeech.bj.bcebos.com/Parakeet/tacotron2_ljspeech_ckpt_0.2.zip)
[transformert_tts](https://paddlespeech.bj.bcebos.com/Parakeet/transformer_tts_ljspeech_ckpt_0.2.zip)
[waveflow_res_128](https://paddlespeech.bj.bcebos.com/Parakeet/waveflow_res128_ljspeech_ckpt_0.2.zip)
## Copyright and License
Parakeet is provided under the [Apache-2.0 license](LICENSE).

View File

@ -52,7 +52,7 @@ vocoder
Like the example above, after loading the pretrained ``ConditionalWaveFlow``
model, call ``model.predict(mel)`` to synthesize raw audio (in wav format).
>>> import soundfile as df
>>> import soundfile as sf
>>> from parakeet.models import ConditionalWaveFlow
>>>
>>> # load the pretrained model

View File

@ -6,7 +6,7 @@
## Dataset
我们假设数据集是样例的列表。你可以通过 `__len__` 方法获取其长度,并且可以通过 `__getitem__` 方法随机访问其元素。有了上述两个调节,我们也可以用 `iter(dataset)` 来获得一个 dataset 的迭代器。我们一般通过继承 `paddle.io.Dataset` 来创建自己的数据集。为其实现 `__len__` 方法和 `__getitem__` 方法即可。
我们假设数据集是样例的列表。你可以通过 `__len__` 方法获取其长度,并且可以通过 `__getitem__` 方法随机访问其元素。有了上述两个条件,我们也可以用 `iter(dataset)` 来获得一个 dataset 的迭代器。我们一般通过继承 `paddle.io.Dataset` 来创建自己的数据集。为其实现 `__len__` 方法和 `__getitem__` 方法即可。
出于数据处理,数据加载和数据集大小等方面的考虑,可以采用集中策略来调控数据集是否被懒惰地预处理,是否被懒惰地被加载,是否常驻内存等。
@ -86,7 +86,7 @@ Sampler 被实现为产生整数的可迭代对象。假设数据集有 `N` 个
当迭代一个 DataLoader 的时候,首先 sampler 产生多个 index, 然后根据这些 index 去取出对应的样例,并调用 batch function 把这些样例组成一个批次。当然取出样例的过程是可并行的,但调用 batch function 组成 batch 不是。
另外的一种选择是使用 batch sampler, 它是产生整数列表的可迭代对象。对于一般的 sampler, 需要对其迭代器使用 next 多次才能产出多个 index, 而对于 batch sampler, 对其迭代器使用 next 一次就可以产出多个 index. 对于使用一般的 sampler 的情形batch size 由 DataLoader 来决定。而对于 batch sampler, 则是由它决定了 DataLoader 的 batch size, 因此可以用它来实现一些特别的需求,比如说动态 batch size.
另外的一种选择是使用 batch sampler, 它是产生整数列表的可迭代对象。对于一般的 sampler, 需要对其迭代器使用 next 多次才能产出多个 index, 而对于 batch sampler, 对其迭代器使用 next 一次就可以产出多个 index. 对于使用一般的 sampler 的情形batch size 由 DataLoader 来决定。而对于 batch sampler, 则是由它决定了 DataLoader 的 batch size, 因此可以用它来实现一些特别的需求,比如说动态 batch size.
## 示例代码

View File

@ -86,6 +86,7 @@ class LJSpeechCollector(object):
for i, _ in sorted(
zip(mel_lens, text_lens), key=lambda x: x[1], reverse=True)
]
mel_lens = np.array(mel_lens, dtype=np.int64)
stop_tokens = [
i
@ -93,7 +94,7 @@ class LJSpeechCollector(object):
zip(stop_tokens, text_lens), key=lambda x: x[1], reverse=True)
]
text_lens = sorted(text_lens, reverse=True)
text_lens = np.array(sorted(text_lens, reverse=True), dtype=np.int64)
# Pad sequence with largest len of the batch
texts = batch_text_id(texts, pad_id=self.padding_idx)

View File

@ -23,7 +23,8 @@ _C.data = CN(
n_fft=1024, # fft frame size
win_length=1024, # window size
hop_length=256, # hop size between ajacent frame
f_max=8000, # Hz, max frequency when converting to mel
fmin=0,
fmax=8000, # Hz, max frequency when converting to mel
n_mels=80, # mel bands
clip_frames=65, # mel clip frames
))

View File

@ -30,12 +30,14 @@ from config import get_cfg_defaults
class Transform(object):
def __init__(self, sample_rate, n_fft, win_length, hop_length, n_mels):
def __init__(self, sample_rate, n_fft, win_length, hop_length, n_mels, fmin, fmax):
self.sample_rate = sample_rate
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.n_mels = n_mels
self.fmin = fmin
self.fmax = fmax
self.spec_normalizer = LogMagnitude(min=1e-5)
@ -47,6 +49,8 @@ class Transform(object):
win_length = self.win_length
hop_length = self.hop_length
n_mels = self.n_mels
fmin = self.fmin
fmax = self.fmax
wav, loaded_sr = librosa.load(wav_path, sr=None)
assert loaded_sr == sr, "sample rate does not match, resampling applied"
@ -78,7 +82,9 @@ class Transform(object):
# Compute mel-spectrograms.
mel_filter_bank = librosa.filters.mel(sr=sr,
n_fft=n_fft,
n_mels=n_mels)
n_mels=n_mels,
fmin=fmin,
fmax=fmax)
mel_spectrogram = np.dot(mel_filter_bank, spectrogram_magnitude)
mel_spectrogram = mel_spectrogram
@ -101,7 +107,7 @@ def create_dataset(config, input_dir, output_dir, verbose=True):
output_dir.mkdir(exist_ok=True)
transform = Transform(config.sample_rate, config.n_fft, config.win_length,
config.hop_length, config.n_mels)
config.hop_length, config.n_mels, config.fmin, config.fmax)
file_names = []
for example in tqdm.tqdm(dataset):

View File

@ -1,48 +0,0 @@
# WaveNet with LJSpeech
## Dataset
### Download the datasaet.
```bash
wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
```
### Extract the dataset.
```bash
tar xjvf LJSpeech-1.1.tar.bz2
```
### Preprocess the dataset.
Assume the path to save the preprocessed dataset is `ljspeech_wavenet`. Run the command below to preprocess the dataset.
```bash
python preprocess.py --input=LJSpeech-1.1/ --output=ljspeech_wavenet
```
## Train the model
The training script requires 4 command line arguments.
`--data` is the path of the training dataset, `--output` is the path of the output directory (we recommend to use a subdirectory in `runs` to manage different experiments.)
`--device` should be "cpu" or "gpu", `--nprocs` is the number of processes to train the model in parallel.
```bash
python train.py --data=ljspeech_wavenet/ --output=runs/test --device="gpu" --nprocs=1
```
If you want distributed training, set a larger `--nprocs` (e.g. 4). Note that distributed training with cpu is not supported yet.
## Synthesize
Synthesize waveform. We assume the `--input` is a directory containing several mel spectrograms(normalized into range[0, 1)) in `.npy` format. The output would be saved in `--output` directory, containing several `.wav` files, each with the same name as the mel spectrogram does.
`--checkpoint_path` should be the path of the parameter file (`.pdparams`) to load. Note that the extention name `.pdparmas` is not included here.
`--device` specifies to device to run synthesis on. Due to the autoregressiveness of wavenet, using cpu may be faster.
```bash
python synthesize.py --input=mels/ --output=wavs/ --checkpoint_path='step-2450000' --device="cpu" --verbose
```

View File

@ -1,58 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from yacs.config import CfgNode as CN
_C = CN()
_C.data = CN(
dict(
batch_size=8, # batch size
valid_size=16, # the first N examples are reserved for validation
sample_rate=22050, # Hz, sample rate
n_fft=2048, # fft frame size
win_length=1024, # window size
hop_length=256, # hop size between ajacent frame
# f_max=8000, # Hz, max frequency when converting to mel
n_mels=80, # mel bands
train_clip_seconds=0.5, # audio clip length(in seconds)
))
_C.model = CN(
dict(
upsample_factors=[16, 16],
n_stack=3,
n_loop=10,
filter_size=2,
residual_channels=128, # resiaudal channel in each flow
loss_type="mog",
output_dim=3, # single gaussian
log_scale_min=-9.0, ))
_C.training = CN(
dict(
lr=1e-3, # learning rates
anneal_rate=0.5, # learning rate decay rate
anneal_interval=200000, # decrese lr by annel_rate every anneal_interval steps
valid_interval=1000, # validation
save_interval=10000, # checkpoint
max_iteration=3000000, # max iteration to train
gradient_max_norm=100.0 # global norm of gradients
))
def get_cfg_defaults():
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
return _C.clone()

View File

@ -1,151 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
import pickle
import numpy as np
import pandas
from paddle.io import Dataset, DataLoader
from parakeet.data.batch import batch_spec, batch_wav
from parakeet.data import dataset
from parakeet.audio import AudioProcessor
class LJSpeech(Dataset):
"""A simple dataset adaptor for the processed ljspeech dataset."""
def __init__(self, root):
self.root = Path(root).expanduser()
meta_data = pandas.read_csv(
str(self.root / "metadata.csv"),
sep="\t",
header=None,
names=["fname", "frames", "samples"])
records = []
for row in meta_data.itertuples():
mel_path = str(self.root / "mel" / (row.fname + ".npy"))
wav_path = str(self.root / "wav" / (row.fname + ".npy"))
records.append((mel_path, wav_path))
self.records = records
def __getitem__(self, i):
mel_name, wav_name = self.records[i]
mel = np.load(mel_name)
wav = np.load(wav_name)
return mel, wav
def __len__(self):
return len(self.records)
class LJSpeechCollector(object):
"""A simple callable to batch LJSpeech examples."""
def __init__(self, padding_value=0.):
self.padding_value = padding_value
def __call__(self, examples):
batch_size = len(examples)
mels = [example[0] for example in examples]
wavs = [example[1] for example in examples]
mels = batch_spec(mels, pad_value=self.padding_value)
wavs = batch_wav(wavs, pad_value=self.padding_value)
audio_starts = np.zeros((batch_size, ), dtype=np.int64)
return mels, wavs, audio_starts
class LJSpeechClipCollector(object):
def __init__(self, clip_frames=65, hop_length=256):
self.clip_frames = clip_frames
self.hop_length = hop_length
def __call__(self, examples):
mels = []
wavs = []
starts = []
for example in examples:
mel, wav_clip, start = self.clip(example)
mels.append(mel)
wavs.append(wav_clip)
starts.append(start)
mels = batch_spec(mels)
wavs = np.stack(wavs)
starts = np.array(starts, dtype=np.int64)
return mels, wavs, starts
def clip(self, example):
mel, wav = example
frames = mel.shape[-1]
start = np.random.randint(0, frames - self.clip_frames)
wav_clip = wav[start * self.hop_length:(start + self.clip_frames) *
self.hop_length]
return mel, wav_clip, start
class DataCollector(object):
def __init__(self,
context_size,
sample_rate,
hop_length,
train_clip_seconds,
valid=False):
frames_per_second = sample_rate // hop_length
train_clip_frames = int(
np.ceil(train_clip_seconds * frames_per_second))
context_frames = context_size // hop_length
self.num_frames = train_clip_frames + context_frames
self.sample_rate = sample_rate
self.hop_length = hop_length
self.valid = valid
def random_crop(self, sample):
audio, mel_spectrogram = sample
audio_frames = int(audio.size) // self.hop_length
max_start_frame = audio_frames - self.num_frames
assert max_start_frame >= 0, "audio is too short to be cropped"
frame_start = np.random.randint(0, max_start_frame)
# frame_start = 0 # norandom
frame_end = frame_start + self.num_frames
audio_start = frame_start * self.hop_length
audio_end = frame_end * self.hop_length
audio = audio[audio_start:audio_end]
return audio, mel_spectrogram, audio_start
def __call__(self, samples):
# transform them first
if self.valid:
samples = [(audio, mel_spectrogram, 0)
for audio, mel_spectrogram in samples]
else:
samples = [self.random_crop(sample) for sample in samples]
# batch them
audios = [sample[0] for sample in samples]
audio_starts = [sample[2] for sample in samples]
mels = [sample[1] for sample in samples]
mels = batch_spec(mels)
if self.valid:
audios = batch_wav(audios, dtype=np.float32)
else:
audios = np.array(audios, dtype=np.float32)
audio_starts = np.array(audio_starts, dtype=np.int64)
return audios, mels, audio_starts

View File

@ -1,161 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tqdm
import csv
import argparse
import numpy as np
import librosa
from pathlib import Path
import pandas as pd
from paddle.io import Dataset
from parakeet.data import batch_spec, batch_wav
from parakeet.datasets import LJSpeechMetaData
from parakeet.audio import AudioProcessor
from parakeet.audio.spec_normalizer import UnitMagnitude
from config import get_cfg_defaults
class Transform(object):
def __init__(self, sample_rate, n_fft, win_length, hop_length, n_mels):
self.sample_rate = sample_rate
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.n_mels = n_mels
self.spec_normalizer = UnitMagnitude(min=1e-5)
def __call__(self, example):
wav_path, _, _ = example
sr = self.sample_rate
n_fft = self.n_fft
win_length = self.win_length
hop_length = self.hop_length
n_mels = self.n_mels
wav, loaded_sr = librosa.load(wav_path, sr=None)
assert loaded_sr == sr, "sample rate does not match, resampling applied"
# Pad audio to the right size.
frames = int(np.ceil(float(wav.size) / hop_length))
fft_padding = (n_fft - hop_length) // 2 # sound
desired_length = frames * hop_length + fft_padding * 2
pad_amount = (desired_length - wav.size) // 2
if wav.size % 2 == 0:
wav = np.pad(wav, (pad_amount, pad_amount), mode='reflect')
else:
wav = np.pad(wav, (pad_amount, pad_amount + 1), mode='reflect')
# Normalize audio.
wav = wav / np.abs(wav).max() * 0.999
# Compute mel-spectrogram.
# Turn center to False to prevent internal padding.
spectrogram = librosa.core.stft(
wav,
hop_length=hop_length,
win_length=win_length,
n_fft=n_fft,
center=False)
spectrogram_magnitude = np.abs(spectrogram)
# Compute mel-spectrograms.
mel_filter_bank = librosa.filters.mel(sr=sr,
n_fft=n_fft,
n_mels=n_mels)
mel_spectrogram = np.dot(mel_filter_bank, spectrogram_magnitude)
mel_spectrogram = mel_spectrogram
# log scale mel_spectrogram.
mel_spectrogram = self.spec_normalizer.transform(mel_spectrogram)
# Extract the center of audio that corresponds to mel spectrograms.
audio = wav[fft_padding:-fft_padding]
assert mel_spectrogram.shape[1] * hop_length == audio.size
# there is no clipping here
return audio, mel_spectrogram
def create_dataset(config, input_dir, output_dir, verbose=True):
input_dir = Path(input_dir).expanduser()
dataset = LJSpeechMetaData(input_dir)
output_dir = Path(output_dir).expanduser()
output_dir.mkdir(exist_ok=True)
transform = Transform(config.sample_rate, config.n_fft, config.win_length,
config.hop_length, config.n_mels)
file_names = []
for example in tqdm.tqdm(dataset):
fname, _, _ = example
base_name = os.path.splitext(os.path.basename(fname))[0]
wav_dir = output_dir / "wav"
mel_dir = output_dir / "mel"
wav_dir.mkdir(exist_ok=True)
mel_dir.mkdir(exist_ok=True)
audio, mel = transform(example)
np.save(str(wav_dir / base_name), audio)
np.save(str(mel_dir / base_name), mel)
file_names.append((base_name, mel.shape[-1], audio.shape[-1]))
meta_data = pd.DataFrame.from_records(file_names)
meta_data.to_csv(
str(output_dir / "metadata.csv"), sep="\t", index=None, header=None)
print("saved meta data in to {}".format(
os.path.join(output_dir, "metadata.csv")))
print("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="create dataset")
parser.add_argument(
"--config",
type=str,
metavar="FILE",
help="extra config to overwrite the default config")
parser.add_argument(
"--input", type=str, help="path of the ljspeech dataset")
parser.add_argument(
"--output", type=str, help="path to save output dataset")
parser.add_argument(
"--opts",
nargs=argparse.REMAINDER,
help="options to overwrite --config file and the default config, passing in KEY VALUE pairs"
)
parser.add_argument(
"-v", "--verbose", action="store_true", help="print msg")
config = get_cfg_defaults()
args = parser.parse_args()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
if args.verbose:
print(config.data)
print(args)
create_dataset(config.data, args.input, args.output, args.verbose)

View File

@ -1,82 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
import soundfile as sf
import os
from pathlib import Path
import paddle
import parakeet
from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWaveNet
from parakeet.utils import layer_tools, checkpoint
from config import get_cfg_defaults
def main(config, args):
paddle.set_device(args.device)
model = ConditionalWaveNet.from_pretrained(config, args.checkpoint_path)
layer_tools.recursively_remove_weight_norm(model)
model.eval()
mel_dir = Path(args.input).expanduser()
output_dir = Path(args.output).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
for file_path in mel_dir.iterdir():
mel = np.load(str(file_path))
audio = model.predict(mel)
audio_path = output_dir / (
os.path.splitext(file_path.name)[0] + ".wav")
sf.write(audio_path, audio, config.data.sample_rate)
print("[synthesize] {} -> {}".format(file_path, audio_path))
if __name__ == "__main__":
config = get_cfg_defaults()
parser = argparse.ArgumentParser(
description="generate mel spectrogram with TransformerTTS.")
parser.add_argument(
"--config",
type=str,
metavar="FILE",
help="extra config to overwrite the default config")
parser.add_argument(
"--checkpoint_path", type=str, help="path of the checkpoint to load.")
parser.add_argument(
"--input",
type=str,
help="path of directory containing mel spectrogram (in .npy format)")
parser.add_argument("--output", type=str, help="path to save outputs")
parser.add_argument(
"--device", type=str, default="cpu", help="device type to use.")
parser.add_argument(
"--opts",
nargs=argparse.REMAINDER,
help="options to overwrite --config file and the default config, passing in KEY VALUE pairs"
)
parser.add_argument(
"-v", "--verbose", action="store_true", help="print msg")
args = parser.parse_args()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
print(args)
main(config, args)

View File

@ -1,177 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from pathlib import Path
import math
import numpy as np
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader, DistributedBatchSampler
from tensorboardX import SummaryWriter
from collections import defaultdict
import parakeet
from parakeet.data import dataset
from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWaveNet
from parakeet.audio import AudioProcessor
from parakeet.utils import scheduler, mp_tools
from parakeet.training.cli import default_argument_parser
from parakeet.training.experiment import ExperimentBase
from parakeet.utils.mp_tools import rank_zero_only
from config import get_cfg_defaults
from ljspeech import LJSpeech, LJSpeechClipCollector, LJSpeechCollector
class Experiment(ExperimentBase):
def setup_model(self):
config = self.config
model = ConditionalWaveNet(
upsample_factors=config.model.upsample_factors,
n_stack=config.model.n_stack,
n_loop=config.model.n_loop,
residual_channels=config.model.residual_channels,
output_dim=config.model.output_dim,
n_mels=config.data.n_mels,
filter_size=config.model.filter_size,
loss_type=config.model.loss_type,
log_scale_min=config.model.log_scale_min)
if self.parallel:
model = paddle.DataParallel(model)
lr_scheduler = paddle.optimizer.lr.StepDecay(
config.training.lr, config.training.anneal_interval,
config.training.anneal_rate)
optimizer = paddle.optimizer.Adam(
lr_scheduler,
parameters=model.parameters(),
grad_clip=paddle.nn.ClipGradByGlobalNorm(
config.training.gradient_max_norm))
self.model = model
self.model_core = model._layers if self.parallel else model
self.optimizer = optimizer
def setup_dataloader(self):
config = self.config
args = self.args
ljspeech_dataset = LJSpeech(args.data)
valid_set, train_set = dataset.split(ljspeech_dataset,
config.data.valid_size)
# convolutional net's causal padding size
context_size = config.model.n_stack \
* sum([(config.model.filter_size - 1) * 2**i for i in range(config.model.n_loop)]) \
+ 1
context_frames = context_size // config.data.hop_length
# frames used to compute loss
frames_per_second = config.data.sample_rate // config.data.hop_length
train_clip_frames = math.ceil(config.data.train_clip_seconds *
frames_per_second)
num_frames = train_clip_frames + context_frames
batch_fn = LJSpeechClipCollector(num_frames, config.data.hop_length)
if not self.parallel:
train_loader = DataLoader(
train_set,
batch_size=config.data.batch_size,
shuffle=True,
drop_last=True,
collate_fn=batch_fn)
else:
sampler = DistributedBatchSampler(
train_set,
batch_size=config.data.batch_size,
shuffle=True,
drop_last=True)
train_loader = DataLoader(
train_set, batch_sampler=sampler, collate_fn=batch_fn)
valid_batch_fn = LJSpeechCollector()
valid_loader = DataLoader(
valid_set, batch_size=1, collate_fn=valid_batch_fn)
self.train_loader = train_loader
self.valid_loader = valid_loader
def train_batch(self):
start = time.time()
batch = self.read_batch()
data_loader_time = time.time() - start
self.model.train()
self.optimizer.clear_grad()
mel, wav, audio_starts = batch
y = self.model(wav, mel, audio_starts)
loss = self.model_core.loss(y, wav)
loss.backward()
self.optimizer.step()
iteration_time = time.time() - start
loss_value = float(loss)
msg = "Rank: {}, ".format(dist.get_rank())
msg += "step: {}, ".format(self.iteration)
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time,
iteration_time)
msg += "loss: {:>.6f}".format(loss_value)
self.logger.info(msg)
if dist.get_rank() == 0:
self.visualizer.add_scalar(
"train/loss", loss_value, global_step=self.iteration)
@mp_tools.rank_zero_only
@paddle.no_grad()
def valid(self):
valid_iterator = iter(self.valid_loader)
valid_losses = []
mel, wav, audio_starts = next(valid_iterator)
y = self.model(wav, mel, audio_starts)
loss = self.model_core.loss(y, wav)
valid_losses.append(float(loss))
valid_loss = np.mean(valid_losses)
self.visualizer.add_scalar(
"valid/loss", valid_loss, global_step=self.iteration)
def main_sp(config, args):
exp = Experiment(config, args)
exp.setup()
exp.run()
def main(config, args):
if args.nprocs > 1 and args.device == "gpu":
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
else:
main_sp(config, args)
if __name__ == "__main__":
config = get_cfg_defaults()
parser = default_argument_parser()
args = parser.parse_args()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
print(args)
main(config, args)

View File

@ -12,6 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
__version__ = "0.2.0-beta.0"
__version__ = "0.2.0"
from parakeet import audio, data, datasets, frontend, models, modules, training, utils

View File

@ -14,7 +14,7 @@
#from parakeet.models.clarinet import *
from parakeet.models.waveflow import *
from parakeet.models.wavenet import *
#from parakeet.models.wavenet import *
from parakeet.models.transformer_tts import *
#from parakeet.models.deepvoice3 import *

View File

@ -1,977 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import time
from typing import Union, Sequence, List
from tqdm import trange
import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F
import paddle.fluid.initializer as I
import paddle.fluid.layers.distributions as D
from parakeet.modules.conv import Conv1dCell
from parakeet.modules.audio import quantize, dequantize, STFT
from parakeet.utils import checkpoint, layer_tools
__all__ = ["WaveNet", "ConditionalWaveNet"]
def crop(x, audio_start, audio_length):
"""Crop the upsampled condition to match audio_length.
The upsampled condition has the same time steps as the whole audio does.
But since audios are sliced to 0.5 seconds randomly while conditions are
not, upsampled conditions should also be sliced to extactly match the time
steps of the audio slice.
Parameters
----------
x : Tensor [shape=(B, C, T)]
The upsampled condition.
audio_start : Tensor [shape=(B,), dtype:int]
The index of the starting point of the audio clips.
audio_length : int
The length of the audio clip(number of samples it contaions).
Returns
-------
Tensor [shape=(B, C, audio_length)]
Cropped condition.
"""
# crop audio
slices = [] # for each example
# paddle now supports Tensor of shape [1] in slice
# starts = audio_start.numpy()
for i in range(x.shape[0]):
start = audio_start[i]
end = start + audio_length
slice = paddle.slice(x[i], axes=[1], starts=[start], ends=[end])
slices.append(slice)
out = paddle.stack(slices)
return out
class UpsampleNet(nn.LayerList):
"""A network used to upsample mel spectrogram to match the time steps of
audio.
It consists of several layers of Conv2DTranspose. Each Conv2DTranspose
layer upsamples the time dimension by its `stride` times.
Also, each Conv2DTranspose's filter_size at frequency dimension is 3.
Parameters
----------
upscale_factors : List[int], optional
Time upsampling factors for each Conv2DTranspose Layer.
The ``UpsampleNet`` contains ``len(upscale_factor)`` Conv2DTranspose
Layers. Each upscale_factor is used as the ``stride`` for the
corresponding Conv2DTranspose. Defaults to [16, 16], this the default
upsampling factor is 256.
Notes
------
``np.prod(upscale_factors)`` should equals the ``hop_length`` of the stft
transformation used to extract spectrogram features from audio.
For example, ``16 * 16 = 256``, then the spectrogram extracted with a stft
transformation whose ``hop_length`` equals 256 is suitable.
See Also
---------
``librosa.core.stft``
"""
def __init__(self, upscale_factors=[16, 16]):
super(UpsampleNet, self).__init__()
self.upscale_factors = list(upscale_factors)
self.upscale_factor = 1
for item in upscale_factors:
self.upscale_factor *= item
for factor in self.upscale_factors:
self.append(
nn.utils.weight_norm(
nn.Conv2DTranspose(
1,
1,
kernel_size=(3, 2 * factor),
stride=(1, factor),
padding=(1, factor // 2))))
def forward(self, x):
r"""Compute the upsampled condition.
Parameters
-----------
x : Tensor [shape=(B, F, T)]
The condition (mel spectrogram here). ``F`` means the frequency
bands, which is the feature size of the input.
In the internal Conv2DTransposes, the frequency dimension
is treated as ``height`` dimension instead of ``in_channels``.
Returns:
Tensor [shape=(B, F, T \* upscale_factor)]
The upsampled condition.
"""
x = paddle.unsqueeze(x, 1)
for sublayer in self:
x = F.leaky_relu(sublayer(x), 0.4)
x = paddle.squeeze(x, 1)
return x
class ResidualBlock(nn.Layer):
"""A Residual block used in wavenet. Conv1D-gated-tanh Block.
It consists of a Conv1DCell and an Conv1D(kernel_size = 1) to integrate
information of the condition.
Notes
--------
It does not have parametric residual or skip connection.
Parameters
-----------
residual_channels : int
The feature size of the input. It is also the feature size of the
residual output and skip output.
condition_dim : int
The feature size of the condition.
filter_size : int
Kernel size of the internal convolution cells.
dilation :int
Dilation of the internal convolution cells.
"""
def __init__(self,
residual_channels: int,
condition_dim: int,
filter_size: Union[int, Sequence[int]],
dilation: int):
super(ResidualBlock, self).__init__()
dilated_channels = 2 * residual_channels
# following clarinet's implementation, we do not have parametric residual
# & skip connection.
_filter_size = filter_size[0] if isinstance(filter_size, (
list, tuple)) else filter_size
std = math.sqrt(1 / (_filter_size * residual_channels))
conv = Conv1dCell(
residual_channels,
dilated_channels,
filter_size,
dilation=dilation,
weight_attr=I.Normal(scale=std))
self.conv = nn.utils.weight_norm(conv)
std = math.sqrt(1 / condition_dim)
condition_proj = Conv1dCell(
condition_dim,
dilated_channels, (1, ),
weight_attr=I.Normal(scale=std))
self.condition_proj = nn.utils.weight_norm(condition_proj)
self.filter_size = filter_size
self.dilation = dilation
self.dilated_channels = dilated_channels
self.residual_channels = residual_channels
self.condition_dim = condition_dim
def forward(self, x, condition=None):
"""Forward pass of the ResidualBlock.
Parameters
-----------
x : Tensor [shape=(B, C, T)]
The input tensor.
condition : Tensor, optional [shape(B, C_cond, T)]
The condition.
It has been upsampled in time steps, so it has the same time steps
as the input does.(C_cond stands for the condition's channels).
Defaults to None.
Returns
-----------
residual : Tensor [shape=(B, C, T)]
The residual, which is used as the input to the next ResidualBlock.
skip_connection : Tensor [shape=(B, C, T)]
Tthe skip connection. This output is accumulated with that of
other ResidualBlocks.
"""
h = x
# dilated conv
h = self.conv(h)
# condition
if condition is not None:
h += self.condition_proj(condition)
# gated tanh
content, gate = paddle.split(h, 2, axis=1)
z = F.sigmoid(gate) * paddle.tanh(content)
# projection
residual = paddle.scale(z + x, math.sqrt(.5))
skip_connection = z
return residual, skip_connection
def start_sequence(self):
"""Prepare the ResidualBlock to generate a new sequence.
Warnings
---------
This method should be called before calling ``add_input`` multiple times.
"""
self.conv.start_sequence()
self.condition_proj.start_sequence()
def add_input(self, x, condition=None):
"""Take a step input and return a step output.
This method works similarily with ``forward`` but in a
``step-in-step-out`` fashion.
Parameters
----------
x : Tensor [shape=(B, C)]
Input for a step.
condition : Tensor, optional [shape=(B, C_cond)]
Condition for a step. Defaults to None.
Returns
----------
residual : Tensor [shape=(B, C)]
The residual for a step, which is used as the input to the next
layer of ResidualBlock.
skip_connection : Tensor [shape=(B, C)]
T he skip connection for a step. This output is accumulated with
that of other ResidualBlocks.
"""
h = x
# dilated conv
h = self.conv.add_input(h)
# condition
if condition is not None:
h += self.condition_proj.add_input(condition)
# gated tanh
content, gate = paddle.split(h, 2, axis=1)
z = F.sigmoid(gate) * paddle.tanh(content)
# projection
residual = paddle.scale(z + x, math.sqrt(0.5))
skip_connection = z
return residual, skip_connection
class ResidualNet(nn.LayerList):
"""The residual network in wavenet.
It consists of ``n_stack`` stacks, each of which consists of ``n_loop``
ResidualBlocks.
Parameters
----------
n_stack : int
Number of stacks in the ``ResidualNet``.
n_loop : int
Number of ResidualBlocks in a stack.
residual_channels : int
Input feature size of each ``ResidualBlock``'s input.
condition_dim : int
Feature size of the condition.
filter_size : int
Kernel size of the internal ``Conv1dCell`` of each ``ResidualBlock``.
"""
def __init__(self,
n_stack: int,
n_loop: int,
residual_channels: int,
condition_dim: int,
filter_size: int):
super(ResidualNet, self).__init__()
# double the dilation at each layer in a stack
dilations = [2**i for i in range(n_loop)] * n_stack
self.context_size = 1 + sum(dilations)
for dilation in dilations:
self.append(
ResidualBlock(residual_channels, condition_dim, filter_size,
dilation))
def forward(self, x, condition=None):
"""Forward pass of ``ResidualNet``.
Parameters
----------
x : Tensor [shape=(B, C, T)]
The input.
condition : Tensor, optional [shape=(B, C_cond, T)]
The condition, it has been upsampled in time steps, so it has the
same time steps as the input does. Defaults to None.
Returns
--------
Tensor [shape=(B, C, T)]
The output.
"""
for i, func in enumerate(self):
x, skip = func(x, condition)
if i == 0:
skip_connections = skip
else:
skip_connections = paddle.scale(skip_connections + skip,
math.sqrt(0.5))
return skip_connections
def start_sequence(self):
"""Prepare the ResidualNet to generate a new sequence. This method
should be called before starting calling ``add_input`` multiple times.
"""
for block in self:
block.start_sequence()
def add_input(self, x, condition=None):
"""Take a step input and return a step output.
This method works similarily with ``forward`` but in a
``step-in-step-out`` fashion.
Parameters
----------
x : Tensor [shape=(B, C)]
Input for a step.
condition : Tensor, optional [shape=(B, C_cond)]
Condition for a step. Defaults to None.
Returns
----------
Tensor [shape=(B, C)]
The skip connection for a step. This output is accumulated with
that of other ResidualBlocks.
"""
for i, func in enumerate(self):
x, skip = func.add_input(x, condition)
if i == 0:
skip_connections = skip
else:
skip_connections = paddle.scale(skip_connections + skip,
math.sqrt(0.5))
return skip_connections
class WaveNet(nn.Layer):
"""Wavenet that transform upsampled mel spectrogram into waveform.
Parameters
-----------
n_stack : int
``n_stack`` for the internal ``ResidualNet``.
n_loop : int
``n_loop`` for the internal ``ResidualNet``.
residual_channels : int
Feature size of the input.
output_dim : int
Feature size of the input.
condition_dim : int
Feature size of the condition (mel spectrogram bands).
filter_size : int
Kernel size of the internal ``ResidualNet``.
loss_type : str, optional ["mog" or "softmax"]
The output type and loss type of the model, by default "mog".
If "softmax", the model input is first quantized audio and the model
outputs a discret categorical distribution.
If "mog", the model input is audio in floating point format, and the
model outputs parameters for a mixture of gaussian distributions.
Namely, the weight, mean and log scale of each gaussian distribution.
Thus, the ``output_size`` should be a multiple of 3.
log_scale_min : float, optional
Minimum value of the log scale of gaussian distributions, by default
-9.0.
This is only used for computing loss when ``loss_type`` is "mog", If
the predicted log scale is less than -9.0, it is clipped at -9.0.
"""
def __init__(self, n_stack, n_loop, residual_channels, output_dim,
condition_dim, filter_size, loss_type, log_scale_min):
super(WaveNet, self).__init__()
if loss_type not in ["softmax", "mog"]:
raise ValueError("loss_type {} is not supported".format(loss_type))
if loss_type == "softmax":
self.embed = nn.Embedding(output_dim, residual_channels)
else:
if (output_dim % 3 != 0):
raise ValueError(
"with Mixture of Gaussians(mog) output, the output dim must be divisible by 3, but get {}".
format(output_dim))
self.embed = nn.utils.weight_norm(
nn.Linear(1, residual_channels), dim=1)
self.resnet = ResidualNet(n_stack, n_loop, residual_channels,
condition_dim, filter_size)
self.context_size = self.resnet.context_size
skip_channels = residual_channels # assume the same channel
self.proj1 = nn.utils.weight_norm(
nn.Linear(skip_channels, skip_channels), dim=1)
self.proj2 = nn.utils.weight_norm(
nn.Linear(skip_channels, skip_channels), dim=1)
# if loss_type is softmax, output_dim is n_vocab of waveform magnitude.
# if loss_type is mog, output_dim is 3 * gaussian, (weight, mean and stddev)
self.proj3 = nn.utils.weight_norm(
nn.Linear(skip_channels, output_dim), dim=1)
self.loss_type = loss_type
self.output_dim = output_dim
self.input_dim = 1
self.skip_channels = skip_channels
self.log_scale_min = log_scale_min
def forward(self, x, condition=None):
"""Forward pass of ``WaveNet``.
Parameters
-----------
x : Tensor [shape=(B, T)]
The input waveform.
condition : Tensor, optional [shape=(B, C_cond, T)]
the upsampled condition. Defaults to None.
Returns
-------
Tensor: [shape=(B, T, C_output)]
The parameters of the output distributions.
"""
# Causal Conv
if self.loss_type == "softmax":
x = paddle.clip(x, min=-1., max=0.99999)
x = quantize(x, self.output_dim)
x = self.embed(x) # (B, T, C)
else:
x = paddle.unsqueeze(x, -1) # (B, T, 1)
x = self.embed(x) # (B, T, C)
x = paddle.transpose(x, perm=[0, 2, 1]) # (B, C, T)
# Residual & Skip-conenection & linears
z = self.resnet(x, condition)
z = paddle.transpose(z, [0, 2, 1])
z = F.relu(self.proj2(F.relu(self.proj1(z))))
y = self.proj3(z)
return y
def start_sequence(self):
"""Prepare the WaveNet to generate a new sequence. This method should
be called before starting calling ``add_input`` multiple times.
"""
self.resnet.start_sequence()
def add_input(self, x, condition=None):
"""Compute the output distribution (represented by its parameters) for
a step. It works similarily with the ``forward`` method but in a
``step-in-step-out`` fashion.
Parameters
-----------
x : Tensor [shape=(B,)]
A step of the input waveform.
condition : Tensor, optional [shape=(B, C_cond)]
A step of the upsampled condition. Defaults to None.
Returns
--------
Tensor: [shape=(B, C_output)]
A step of the parameters of the output distributions.
"""
# Causal Conv
if self.loss_type == "softmax":
x = paddle.clip(x, min=-1., max=0.99999)
x = quantize(x, self.output_dim)
x = self.embed(x) # (B, C)
else:
x = paddle.unsqueeze(x, -1) # (B, 1)
x = self.embed(x) # (B, C)
# Residual & Skip-conenection & linears
z = self.resnet.add_input(x, condition)
z = F.relu(self.proj2(F.relu(self.proj1(z)))) # (B, C)
# Output
y = self.proj3(z)
return y
def compute_softmax_loss(self, y, t):
"""Compute the loss when output distributions are categorial
distributions.
Parameters
----------
y : Tensor [shape=(B, T, C_output)]
The logits of the output distributions.
t : Tensor [shape=(B, T)]
The target audio. The audio is first quantized then used as the
target.
Notes
-------
Output distributions whose input contains padding is neglected in
loss computation. So the first ``context_size`` steps does not
contribute to the loss.
Returns
--------
Tensor: [shape=(1,)]
The loss.
"""
# context size is not taken into account
y = y[:, self.context_size:, :]
t = t[:, self.context_size:]
t = paddle.clip(t, min=-1.0, max=0.99999)
quantized = quantize(t, n_bands=self.output_dim)
label = paddle.unsqueeze(quantized, -1)
loss = F.softmax_with_cross_entropy(y, label)
reduced_loss = paddle.mean(loss)
return reduced_loss
def sample_from_softmax(self, y):
"""Sample from the output distribution when the output distributions
are categorical distriobutions.
Parameters
----------
y : Tensor [shape=(B, T, C_output)]
The logits of the output distributions.
Returns
--------
Tensor [shape=(B, T)]
Waveform sampled from the output distribution.
"""
# dequantize
batch_size, time_steps, output_dim, = y.shape
y = paddle.reshape(y, (batch_size * time_steps, output_dim))
prob = F.softmax(y)
quantized = paddle.fluid.layers.sampling_id(prob)
samples = dequantize(quantized, n_bands=self.output_dim)
samples = paddle.reshape(samples, (batch_size, -1))
return samples
def compute_mog_loss(self, y, t):
"""Compute the loss where output distributions is a mixture of
Gaussians distributions.
Parameters
-----------
y : Tensor [shape=(B, T, C_output)]
The parameterd of the output distribution. It is the concatenation
of 3 parts, the logits of every distribution, the mean of each
distribution and the log standard deviation of each distribution.
Each part's shape is (B, T, n_mixture), where ``n_mixture`` means
the number of Gaussians in the mixture.
t : Tensor [shape=(B, T)]
The target audio.
Notes
-------
Output distributions whose input contains padding is neglected in
loss computation. So the first ``context_size`` steps does not
contribute to the loss.
Returns
--------
Tensor: [shape=(1,)]
The loss.
"""
n_mixture = self.output_dim // 3
# context size is not taken in to account
y = y[:, self.context_size:, :]
t = t[:, self.context_size:]
w, mu, log_std = paddle.split(y, 3, axis=2)
# 100.0 is just a large float
log_std = paddle.clip(log_std, min=self.log_scale_min, max=100.)
inv_std = paddle.exp(-log_std)
p_mixture = F.softmax(w, -1)
t = paddle.unsqueeze(t, -1)
if n_mixture > 1:
# t = F.expand_as(t, log_std)
t = paddle.expand(t, [-1, -1, n_mixture])
x_std = inv_std * (t - mu)
exponent = paddle.exp(-0.5 * x_std * x_std)
pdf_x = 1.0 / math.sqrt(2.0 * math.pi) * inv_std * exponent
pdf_x = p_mixture * pdf_x
# pdf_x: [bs, len]
pdf_x = paddle.sum(pdf_x, -1)
per_sample_loss = -paddle.log(pdf_x + 1e-9)
loss = paddle.mean(per_sample_loss)
return loss
def sample_from_mog(self, y):
"""Sample from the output distribution when the output distribution
is a mixture of Gaussian distributions.
Parameters
------------
y : Tensor [shape=(B, T, C_output)]
The parameterd of the output distribution. It is the concatenation
of 3 parts, the logits of every distribution, the mean of each
distribution and the log standard deviation of each distribution.
Each part's shape is (B, T, n_mixture), where ``n_mixture`` means
the number of Gaussians in the mixture.
Returns
--------
Tensor: [shape=(B, T)]
Waveform sampled from the output distribution.
"""
batch_size, time_steps, output_dim = y.shape
n_mixture = output_dim // 3
w, mu, log_std = paddle.split(y, 3, -1)
reshaped_w = paddle.reshape(w, (batch_size * time_steps, n_mixture))
prob_ids = paddle.fluid.layers.sampling_id(F.softmax(reshaped_w))
prob_ids = paddle.reshape(prob_ids, (batch_size, time_steps))
prob_ids = prob_ids.numpy()
# do it
index = np.array([[[b, t, prob_ids[b, t]] for t in range(time_steps)]
for b in range(batch_size)]).astype("int32")
index_var = paddle.to_tensor(index)
mu_ = paddle.gather_nd(mu, index_var)
log_std_ = paddle.gather_nd(log_std, index_var)
dist = D.Normal(mu_, paddle.exp(log_std_))
samples = dist.sample(shape=[])
samples = paddle.clip(samples, min=-1., max=1.)
return samples
def sample(self, y):
"""Sample from the output distribution.
Parameters
----------
y : Tensor [shape=(B, T, C_output)]
The parameterd of the output distribution.
Returns
--------
Tensor [shape=(B, T)]
Waveform sampled from the output distribution.
"""
if self.loss_type == "softmax":
return self.sample_from_softmax(y)
else:
return self.sample_from_mog(y)
def loss(self, y, t):
"""Compute the loss given the output distribution and the target.
Parameters
----------
y : Tensor [shape=(B, T, C_output)]
The parameters of the output distribution.
t : Tensor [shape=(B, T)]
The target audio.
Returns
---------
Tensor: [shape=(1,)]
The loss.
"""
if self.loss_type == "softmax":
return self.compute_softmax_loss(y, t)
else:
return self.compute_mog_loss(y, t)
class ConditionalWaveNet(nn.Layer):
r"""Conditional Wavenet. An implementation of
`WaveNet: A Generative Model for Raw Audio <http://arxiv.org/abs/1609.03499>`_.
It contains an UpsampleNet as the encoder and a WaveNet as the decoder.
It is an autoregressive model that generate raw audio.
Parameters
----------
upsample_factors : List[int]
The upsampling factors of the UpsampleNet.
n_stack : int
Number of convolution stacks in the WaveNet.
n_loop : int
Number of convolution layers in a convolution stack.
Convolution layers in a stack have exponentially growing dilations,
from 1 to .. math:: `k^{n_{loop} - 1}`, where k is the kernel size.
residual_channels : int
Feature size of each ResidualBlocks.
output_dim : int
Feature size of the output. See ``loss_type`` for details.
n_mels : int
The number of bands of mel spectrogram.
filter_size : int, optional
Convolution kernel size of each ResidualBlock, by default 2.
loss_type : str, optional ["mog" or "softmax"]
The output type and loss type of the model, by default "mog".
If "softmax", the model input should be quantized audio and the model
outputs a discret distribution.
If "mog", the model input is audio in floating point format, and the
model outputs parameters for a mixture of gaussian distributions.
Namely, the weight, mean and logscale of each gaussian distribution.
Thus, the ``output_size`` should be a multiple of 3.
log_scale_min : float, optional
Minimum value of the log scale of gaussian distributions, by default
-9.0.
This is only used for computing loss when ``loss_type`` is "mog", If
the predicted log scale is less than -9.0, it is clipped at -9.0.
"""
def __init__(self,
upsample_factors: List[int],
n_stack: int,
n_loop: int,
residual_channels: int,
output_dim: int,
n_mels: int,
filter_size: int=2,
loss_type: str="mog",
log_scale_min: float=-9.0):
super(ConditionalWaveNet, self).__init__()
self.encoder = UpsampleNet(upsample_factors)
self.decoder = WaveNet(
n_stack=n_stack,
n_loop=n_loop,
residual_channels=residual_channels,
output_dim=output_dim,
condition_dim=n_mels,
filter_size=filter_size,
loss_type=loss_type,
log_scale_min=log_scale_min)
def forward(self, audio, mel, audio_start):
"""Compute the output distribution given the mel spectrogram and the input(for teacher force training).
Parameters
-----------
audio : Tensor [shape=(B, T_audio)]
ground truth waveform, used for teacher force training.
mel : Tensor [shape(B, F, T_mel)]
Mel spectrogram. Note that it is the spectrogram for the whole
utterance.
audio_start : Tensor [shape=(B,), dtype: int]
Audio slices' start positions for each utterance.
Returns
----------
Tensor [shape(B, T_audio - 1, C_output)]
Parameters for the output distribution, where ``C_output`` is the
``output_dim`` of the decoder.)
"""
audio_length = audio.shape[1] # audio clip's length
condition = self.encoder(mel)
condition_slice = crop(condition, audio_start, audio_length)
# shifting 1 step
audio = audio[:, :-1]
condition_slice = condition_slice[:, :, 1:]
y = self.decoder(audio, condition_slice)
return y
def loss(self, y, t):
"""Compute loss with respect to the output distribution and the target
audio.
Parameters
-----------
y : Tensor [shape=(B, T - 1, C_output)]
Parameters of the output distribution.
t : Tensor [shape(B, T)]
target waveform.
Returns
--------
Tensor: [shape=(1,)]
the loss.
"""
t = t[:, 1:]
loss = self.decoder.loss(y, t)
return loss
def sample(self, y):
"""Sample from the output distribution.
Parameters
-----------
y : Tensor [shape=(B, T, C_output)]
Parameters of the output distribution.
Returns
--------
Tensor [shape=(B, T)]
Sampled waveform from the output distribution.
"""
samples = self.decoder.sample(y)
return samples
@paddle.no_grad()
def infer(self, mel):
r"""Synthesize waveform from mel spectrogram.
Parameters
-----------
mel : Tensor [shape=(B, F, T)]
The ondition (mel spectrogram here).
Returns
-----------
Tensor [shape=(B, T \* upsacle_factor)]
Synthesized waveform.
``upscale_factor`` is the ``upscale_factor`` of the encoder
``UpsampleNet``.
"""
condition = self.encoder(mel)
batch_size, _, time_steps = condition.shape
samples = []
self.decoder.start_sequence()
x_t = paddle.zeros((batch_size, ), dtype=mel.dtype)
for i in trange(time_steps):
c_t = condition[:, :, i] # (B, C)
y_t = self.decoder.add_input(x_t, c_t) #(B, C)
y_t = paddle.unsqueeze(y_t, 1)
x_t = self.sample(y_t) # (B, 1)
x_t = paddle.squeeze(x_t, 1) #(B,)
samples.append(x_t)
samples = paddle.stack(samples, -1)
return samples
@paddle.no_grad()
def predict(self, mel):
r"""Synthesize audio from mel spectrogram.
The output and input are numpy arrays without batch.
Parameters
----------
mel : np.ndarray [shape=(C, T)]
Mel spectrogram of an utterance.
Returns
-------
Tensor : np.ndarray [shape=(C, T \* upsample_factor)]
The synthesized waveform of an utterance.
"""
mel = paddle.to_tensor(mel)
mel = paddle.unsqueeze(mel, 0)
audio = self.infer(mel)
audio = audio[0].numpy()
return audio
@classmethod
def from_pretrained(cls, config, checkpoint_path):
"""Build a ConditionalWaveNet model from a pretrained model.
Parameters
----------
config: yacs.config.CfgNode
model configs
checkpoint_path: Path or str
the path of pretrained model checkpoint, without extension name
Returns
-------
ConditionalWaveNet
The model built from pretrained result.
"""
model = cls(upsample_factors=config.model.upsample_factors,
n_stack=config.model.n_stack,
n_loop=config.model.n_loop,
residual_channels=config.model.residual_channels,
output_dim=config.model.output_dim,
n_mels=config.data.n_mels,
filter_size=config.model.filter_size,
loss_type=config.model.loss_type,
log_scale_min=config.model.log_scale_min)
layer_tools.summary(model)
checkpoint.load_parameters(model, checkpoint_path=checkpoint_path)
return model