# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import numpy as np import paddle from paddle import distributed as dist from paddle.io import DataLoader, DistributedBatchSampler from parakeet.data import dataset from parakeet.models.waveflow import ConditionalWaveFlow, WaveFlowLoss from parakeet.utils import mp_tools from parakeet.training.cli import default_argument_parser from parakeet.training.experiment import ExperimentBase from config import get_cfg_defaults from ljspeech import LJSpeech, LJSpeechClipCollector, LJSpeechCollector class Experiment(ExperimentBase): def setup_model(self): config = self.config model = ConditionalWaveFlow( upsample_factors=config.model.upsample_factors, n_flows=config.model.n_flows, n_layers=config.model.n_layers, n_group=config.model.n_group, channels=config.model.channels, n_mels=config.data.n_mels, kernel_size=config.model.kernel_size) if self.parallel: model = paddle.DataParallel(model) optimizer = paddle.optimizer.Adam( config.training.lr, parameters=model.parameters()) criterion = WaveFlowLoss(sigma=config.model.sigma) self.model = model self.optimizer = optimizer self.criterion = criterion def setup_dataloader(self): config = self.config args = self.args ljspeech_dataset = LJSpeech(args.data) valid_set, train_set = dataset.split(ljspeech_dataset, config.data.valid_size) batch_fn = LJSpeechClipCollector(config.data.clip_frames, config.data.hop_length) if not self.parallel: train_loader = DataLoader( train_set, batch_size=config.data.batch_size, shuffle=True, drop_last=True, collate_fn=batch_fn) else: sampler = DistributedBatchSampler( train_set, batch_size=config.data.batch_size, num_replicas=dist.get_world_size(), rank=dist.get_rank(), shuffle=True, drop_last=True) train_loader = DataLoader( train_set, batch_sampler=sampler, collate_fn=batch_fn) valid_batch_fn = LJSpeechCollector() valid_loader = DataLoader( valid_set, batch_size=1, collate_fn=valid_batch_fn) self.train_loader = train_loader self.valid_loader = valid_loader def compute_outputs(self, mel, wav): # model_core = model._layers if isinstance(model, paddle.DataParallel) else model z, log_det_jocobian = self.model(wav, mel) return z, log_det_jocobian def train_batch(self): start = time.time() batch = self.read_batch() data_loader_time = time.time() - start self.model.train() self.optimizer.clear_grad() mel, wav = batch z, log_det_jocobian = self.compute_outputs(mel, wav) loss = self.criterion(z, log_det_jocobian) loss.backward() self.optimizer.step() iteration_time = time.time() - start loss_value = float(loss) msg = "Rank: {}, ".format(dist.get_rank()) msg += "step: {}, ".format(self.iteration) msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time, iteration_time) msg += "loss: {:>.6f}".format(loss_value) self.logger.info(msg) if dist.get_rank() == 0: self.visualizer.add_scalar("train/loss", loss_value, self.iteration) @mp_tools.rank_zero_only @paddle.no_grad() def valid(self): valid_iterator = iter(self.valid_loader) valid_losses = [] mel, wav = next(valid_iterator) z, log_det_jocobian = self.compute_outputs(mel, wav) loss = self.criterion(z, log_det_jocobian) valid_losses.append(float(loss)) valid_loss = np.mean(valid_losses) self.visualizer.add_scalar("valid/loss", valid_loss, self.iteration) def main_sp(config, args): exp = Experiment(config, args) exp.setup() exp.resume_or_load() exp.run() def main(config, args): if args.nprocs > 1 and args.device == "gpu": dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs) else: main_sp(config, args) if __name__ == "__main__": config = get_cfg_defaults() parser = default_argument_parser() args = parser.parse_args() if args.config: config.merge_from_file(args.config) if args.opts: config.merge_from_list(args.opts) config.freeze() print(config) print(args) main(config, args)