# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from yacs.config import CfgNode as CN _C = CN() _C.data = CN( dict( batch_size=16, # batch size valid_size=64, # the first N examples are reserved for validation sample_rate=22050, # Hz, sample rate n_fft=1024, # fft frame size win_length=1024, # window size hop_length=256, # hop size between ajacent frame f_max=8000, # Hz, max frequency when converting to mel d_mel=80, # mel bands padding_idx=0, # text embedding's padding index mel_start_value=0.5, # value for starting frame mel_end_value=-0.5, # # value for ending frame )) _C.model = CN( dict( d_encoder=512, # embedding & encoder's internal size d_decoder=256, # decoder's internal size n_heads=4, # actually it can differ at each layer d_ffn=1024, # encoder_d_ffn & decoder_d_ffn encoder_layers=4, # number of transformer encoder layer decoder_layers=4, # number of transformer decoder layer d_prenet=256, # decprenet's hidden size (d_mel=>d_prenet=>d_decoder) d_postnet=256, # decoder postnet(cnn)'s internal channel postnet_layers=5, # decoder postnet(cnn)'s layer postnet_kernel_size=5, # decoder postnet(cnn)'s kernel size max_reduction_factor=10, # max_reduction factor dropout=0.1, # global droput probability stop_loss_scale=8.0, # scaler for stop _loss decoder_prenet_dropout=0.5, # decoder prenet dropout probability )) _C.training = CN( dict( lr=1e-4, # learning rate drop_n_heads=[[0, 0], [15000, 1]], reduction_factor=[[0, 10], [80000, 4], [200000, 2]], plot_interval=1000, # plot attention and spectrogram valid_interval=1000, # validation save_interval=10000, # checkpoint max_iteration=900000, # max iteration to train )) def get_cfg_defaults(): """Get a yacs CfgNode object with default values for my_project.""" # Return a clone so that the defaults will not be altered # This is for the "local variable" use pattern return _C.clone()