# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import paddle from paddle import Tensor from paddle.static import InputSpec from paddle.nn import functional as F def sinusoid_position_encoding(num_positions: int, feature_size: int, omega: float=1.0, start_pos: int=0, dtype=None) -> paddle.Tensor: # return tensor shape (num_positions, feature_size) if (feature_size % 2 != 0): raise ValueError("size should be divisible by 2") dtype = dtype or paddle.get_default_dtype() channel = paddle.arange(0, feature_size, 2, dtype=dtype) index = paddle.arange(start_pos, start_pos + num_positions, 1, dtype=dtype) p = (paddle.unsqueeze(index, -1) * omega) / (10000.0**(channel / float(feature_size))) encodings = paddle.zeros([num_positions, feature_size], dtype=dtype) encodings[:, 0::2] = paddle.sin(p) encodings[:, 1::2] = paddle.cos(p) return encodings def call_it(x): shape = paddle.shape(x) a = shape[0] b = shape[1] c = sinusoid_position_encoding(a, b) return c call_it(paddle.randn([8, 32])) m = paddle.jit.to_static( call_it, input_spec=[InputSpec( [-1, -1], dtype=paddle.int32)]) m(paddle.randn([8, 32]).astype(paddle.int32))