# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle from paddle import nn from paddle.jit import to_static, save from paddle.static import InputSpec def test_applicative_evaluation(): def m_sqrt2(x): return paddle.scale(x, math.sqrt(2)) subgraph = to_static(m_sqrt2, input_spec=[InputSpec([-1])]) paddle.jit.save(subgraph, './temp_test_to_static') fn = paddle.jit.load('./temp_test_to_static') x = paddle.arange(10, dtype=paddle.float32) y = fn(x) print(x) print(y) def test_nested_sequential(): class Net(nn.Layer): def __init__(self): super().__init__() group1 = nn.Sequential( nn.Linear(2, 3), nn.Sigmoid(), ) group2 = nn.Sequential( nn.Sequential(nn.Linear(3, 3)), nn.Linear(3, 4), nn.ReLU(), ) self.layers = nn.Sequential(group1, group2) def forward(self, x): return self.layers(x) net = Net() x = paddle.randn([4, 2]) y = net(x) print(y) subgraph = to_static(net, input_spec=[InputSpec([-1, 2])]) paddle.jit.save(subgraph, './temp_test_to_static') fn = paddle.jit.load('./temp_test_to_static') y = fn(x) print(y)