# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle import nn from paddle.nn import functional as F from scipy import signal import numpy as np __all__ = ["quantize", "dequantize", "STFT"] def quantize(values, n_bands): """Linearlly quantize a float Tensor in [-1, 1) to an interger Tensor in [0, n_bands). Parameters ----------- values : Tensor [dtype: flaot32 or float64] The floating point value. n_bands : int The number of bands. The output integer Tensor's value is in the range [0, n_bans). Returns ---------- Tensor [dtype: int 64] The quantized tensor. """ quantized = paddle.cast((values + 1.0) / 2.0 * n_bands, "int64") return quantized def dequantize(quantized, n_bands, dtype=None): """Linearlly dequantize an integer Tensor into a float Tensor in the range [-1, 1). Parameters ----------- quantized : Tensor [dtype: int] The quantized value in the range [0, n_bands). n_bands : int Number of bands. The input integer Tensor's value is in the range [0, n_bans). dtype : str, optional Data type of the output. Returns ----------- Tensor The dequantized tensor, dtype is specified by `dtype`. If `dtype` is not specified, the default float data type is used. """ dtype = dtype or paddle.get_default_dtype() value = (paddle.cast(quantized, dtype) + 0.5) * (2.0 / n_bands) - 1.0 return value class STFT(nn.Layer): """A module for computing stft transformation in a differentiable way. Parameters ------------ n_fft : int Number of samples in a frame. hop_length : int Number of samples shifted between adjacent frames. win_length : int Length of the window. window : str, optional Name of window function, see `scipy.signal.get_window` for more details. Defaults to "hanning". Notes ----------- It behaves like ``librosa.core.stft``. See ``librosa.core.stft`` for more details. Given a audio which ``T`` samples, it the STFT transformation outputs a spectrum with (C, frames) and complex dtype, where ``C = 1 + n_fft / 2`` and ``frames = 1 + T // hop_lenghth``. Ony ``center`` and ``reflect`` padding is supported now. """ def __init__(self, n_fft, hop_length, win_length, window="hanning"): super(STFT, self).__init__() self.hop_length = hop_length self.n_bin = 1 + n_fft // 2 self.n_fft = n_fft # calculate window window = signal.get_window(window, win_length) if n_fft != win_length: pad = (n_fft - win_length) // 2 window = np.pad(window, ((pad, pad), ), 'constant') # calculate weights r = np.arange(0, n_fft) M = np.expand_dims(r, -1) * np.expand_dims(r, 0) w_real = np.reshape(window * np.cos(2 * np.pi * M / n_fft)[:self.n_bin], (self.n_bin, 1, 1, self.n_fft)) w_imag = np.reshape(window * np.sin(-2 * np.pi * M / n_fft)[:self.n_bin], (self.n_bin, 1, 1, self.n_fft)) w = np.concatenate([w_real, w_imag], axis=0) self.weight = paddle.cast( paddle.to_tensor(w), paddle.get_default_dtype()) def forward(self, x): """Compute the stft transform. Parameters ------------ x : Tensor [shape=(B, T)] The input waveform. Returns ------------ real : Tensor [shape=(B, C, 1, frames)] The real part of the spectrogram. imag : Tensor [shape=(B, C, 1, frames)] The image part of the spectrogram. """ # x(batch_size, time_steps) # pad it first with reflect mode # TODO(chenfeiyu): report an issue on paddle.flip pad_start = paddle.reverse(x[:, 1:1 + self.n_fft // 2], axis=[1]) pad_stop = paddle.reverse(x[:, -(1 + self.n_fft // 2):-1], axis=[1]) x = paddle.concat([pad_start, x, pad_stop], axis=-1) # to BC1T, C=1 x = paddle.unsqueeze(x, axis=[1, 2]) out = F.conv2d(x, self.weight, stride=(1, self.hop_length)) real, imag = paddle.chunk(out, 2, axis=1) # BC1T return real, imag def power(self, x): """Compute the power spectrum. Parameters ------------ x : Tensor [shape=(B, T)] The input waveform. Returns ------------ Tensor [shape=(B, C, 1, T)] The power spectrum. """ real, imag = self(x) power = real**2 + imag**2 return power def magnitude(self, x): """Compute the magnitude of the spectrum. Parameters ------------ x : Tensor [shape=(B, T)] The input waveform. Returns ------------ Tensor [shape=(B, C, 1, T)] The magnitude of the spectrum. """ power = self.power(x) magnitude = paddle.sqrt(power) return magnitude