# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import os import numpy as np import soundfile as sf import paddle.fluid.dygraph as dg def make_output_tree(output_dir): checkpoint_dir = os.path.join(output_dir, "checkpoints") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) state_dir = os.path.join(output_dir, "states") if not os.path.exists(state_dir): os.makedirs(state_dir) def valid_model(model, valid_loader, writer, global_step, sample_rate): loss = [] wavs = [] model.eval() for i, batch in enumerate(valid_loader): # print("sentence {}".format(i)) audio_clips, mel_specs, audio_starts = batch y_var = model(audio_clips, mel_specs, audio_starts) wav_var = model.sample(y_var) loss_var = model.loss(y_var, audio_clips) loss.append(loss_var.numpy()[0]) wavs.append(wav_var.numpy()[0]) average_loss = np.mean(loss) writer.add_scalar("valid_loss", average_loss, global_step) for i, wav in enumerate(wavs): writer.add_audio("valid/sample_{}".format(i), wav, global_step, sample_rate) def eval_model(model, valid_loader, output_dir, sample_rate): model.eval() for i, batch in enumerate(valid_loader): # print("sentence {}".format(i)) path = os.path.join(output_dir, "sentence_{}.wav".format(i)) audio_clips, mel_specs, audio_starts = batch wav_var = model.synthesis(mel_specs) wav_np = wav_var.numpy()[0] sf.write(path, wav_np, samplerate=sample_rate) print("generated {}".format(path)) def save_checkpoint(model, optim, checkpoint_dir, global_step): checkpoint_path = os.path.join(checkpoint_dir, "step_{:09d}".format(global_step)) dg.save_dygraph(model.state_dict(), checkpoint_path) dg.save_dygraph(optim.state_dict(), checkpoint_path)