from pathlib import Path import numpy as np import pandas as pd import librosa from parakeet import g2p from parakeet import audio from parakeet.data.sampler import SequentialSampler, RandomSampler, BatchSampler from parakeet.data.dataset import Dataset from parakeet.data.datacargo import DataCargo from parakeet.data.batch import TextIDBatcher, SpecBatcher _ljspeech_processor = audio.AudioProcessor( sample_rate=22050, num_mels=80, min_level_db=-100, ref_level_db=20, n_fft=2048, win_length= int(22050 * 0.05), hop_length= int(22050 * 0.0125), power=1.2, preemphasis=0.97, signal_norm=True, symmetric_norm=False, max_norm=1., mel_fmin=0, mel_fmax=None, clip_norm=True, griffin_lim_iters=60, do_trim_silence=False, sound_norm=False) class LJSpeech(Dataset): def __init__(self, root): super(LJSpeech, self).__init__() assert isinstance(root, (str, Path)), "root should be a string or Path object" self.root = root if isinstance(root, Path) else Path(root) self.metadata = self._prepare_metadata() def _prepare_metadata(self): csv_path = self.root.joinpath("metadata.csv") metadata = pd.read_csv(csv_path, sep="|", header=None, quoting=3, names=["fname", "raw_text", "normalized_text"]) return metadata def _get_example(self, metadatum): """All the code for generating an Example from a metadatum. If you want a different preprocessing pipeline, you can override this method. This method may require several processor, each of which has a lot of options. In this case, you'd better pass a composed transform and pass it to the init method. """ fname, raw_text, normalized_text = metadatum wav_path = self.root.joinpath("wavs", fname + ".wav") # load -> trim -> preemphasis -> stft -> magnitude -> mel_scale -> logscale -> normalize wav = _ljspeech_processor.load_wav(str(wav_path)) mag = _ljspeech_processor.spectrogram(wav).astype(np.float32) mel = _ljspeech_processor.melspectrogram(wav).astype(np.float32) phonemes = np.array(g2p.en.text_to_sequence(normalized_text), dtype=np.int64) return (mag, mel, phonemes) # maybe we need to implement it as a map in the future def __getitem__(self, index): metadatum = self.metadata.iloc[index] example = self._get_example(metadatum) return example def __iter__(self): for i in range(len(self)): yield self[i] def __len__(self): return len(self.metadata) def batch_examples(batch): texts = [] mels = [] mel_inputs = [] text_lens = [] pos_texts = [] pos_mels = [] for data in batch: _, mel, text = data mel_inputs.append(np.concatenate([np.zeros([mel.shape[0], 1], np.float32), mel[:,:-1]], axis=-1)) text_lens.append(len(text)) pos_texts.append(np.arange(1, len(text) + 1)) pos_mels.append(np.arange(1, mel.shape[1] + 1)) mels.append(mel) texts.append(text) # Sort by text_len in descending order texts = [i for i,_ in sorted(zip(texts, text_lens), key=lambda x: x[1], reverse=True)] mels = [i for i,_ in sorted(zip(mels, text_lens), key=lambda x: x[1], reverse=True)] mel_inputs = [i for i,_ in sorted(zip(mel_inputs, text_lens), key=lambda x: x[1], reverse=True)] pos_texts = [i for i,_ in sorted(zip(pos_texts, text_lens), key=lambda x: x[1], reverse=True)] pos_mels = [i for i,_ in sorted(zip(pos_mels, text_lens), key=lambda x: x[1], reverse=True)] text_lens = sorted(text_lens, reverse=True) # Pad sequence with largest len of the batch texts = TextIDBatcher(pad_id=0)(texts) pos_texts = TextIDBatcher(pad_id=0)(pos_texts) pos_mels = TextIDBatcher(pad_id=0)(pos_mels) mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1)) mel_inputs = np.transpose(SpecBatcher(pad_value=0.)(mel_inputs), axes=(0,2,1)) return (texts, mels, mel_inputs, pos_texts, pos_mels, np.array(text_lens)) def batch_examples_vocoder(batch): mels=[] mags=[] for data in batch: mag, mel, _ = data mels.append(mel) mags.append(mag) mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1)) mags = np.transpose(SpecBatcher(pad_value=0.)(mags), axes=(0,2,1)) return (mels, mags)