import itertools import os import time import jsonargparse import numpy as np import paddle.fluid.dygraph as dg def add_config_options_to_parser(parser): parser.add_argument('--valid_size', type=int, help="size of the valid dataset") parser.add_argument('--segment_length', type=int, help="the length of audio clip for training") parser.add_argument('--sample_rate', type=int, help="sampling rate of audio data file") parser.add_argument('--fft_window_shift', type=int, help="the shift of fft window for each frame") parser.add_argument('--fft_window_size', type=int, help="the size of fft window for each frame") parser.add_argument('--fft_size', type=int, help="the size of fft filter on each frame") parser.add_argument('--mel_bands', type=int, help="the number of mel bands when calculating mel spectrograms") parser.add_argument('--mel_fmin', type=float, help="lowest frequency in calculating mel spectrograms") parser.add_argument('--mel_fmax', type=float, help="highest frequency in calculating mel spectrograms") parser.add_argument('--seed', type=int, help="seed of random initialization for the model") parser.add_argument('--learning_rate', type=float) parser.add_argument('--batch_size', type=int, help="batch size for training") parser.add_argument('--test_every', type=int, help="test interval during training") parser.add_argument('--save_every', type=int, help="checkpointing interval during training") parser.add_argument('--max_iterations', type=int, help="maximum training iterations") parser.add_argument('--sigma', type=float, help="standard deviation of the latent Gaussian variable") parser.add_argument('--n_flows', type=int, help="number of flows") parser.add_argument('--n_group', type=int, help="number of adjacent audio samples to squeeze into one column") parser.add_argument('--n_layers', type=int, help="number of conv2d layer in one wavenet-like flow architecture") parser.add_argument('--n_channels', type=int, help="number of residual channels in flow") parser.add_argument('--kernel_h', type=int, help="height of the kernel in the conv2d layer") parser.add_argument('--kernel_w', type=int, help="width of the kernel in the conv2d layer") parser.add_argument('--config', action=jsonargparse.ActionConfigFile) def load_latest_checkpoint(checkpoint_dir, rank=0): checkpoint_path = os.path.join(checkpoint_dir, "checkpoint") # Create checkpoint index file if not exist. if (not os.path.isfile(checkpoint_path)) and rank == 0: with open(checkpoint_path, "w") as handle: handle.write("model_checkpoint_path: step-0") # Make sure that other process waits until checkpoint file is created # by process 0. while not os.path.isfile(checkpoint_path): time.sleep(1) # Fetch the latest checkpoint index. with open(checkpoint_path, "r") as handle: latest_checkpoint = handle.readline().split()[-1] iteration = int(latest_checkpoint.split("-")[-1]) return iteration def save_latest_checkpoint(checkpoint_dir, iteration): checkpoint_path = os.path.join(checkpoint_dir, "checkpoint") # Update the latest checkpoint index. with open(checkpoint_path, "w") as handle: handle.write("model_checkpoint_path: step-{}".format(iteration)) def load_parameters(checkpoint_dir, rank, model, optimizer=None, iteration=None, file_path=None): if file_path is None: if iteration is None: iteration = load_latest_checkpoint(checkpoint_dir, rank) if iteration == 0: return file_path = "{}/step-{}".format(checkpoint_dir, iteration) model_dict, optimizer_dict = dg.load_dygraph(file_path) model.set_dict(model_dict) print("[checkpoint] Rank {}: loaded model from {}".format(rank, file_path)) if optimizer and optimizer_dict: optimizer.set_dict(optimizer_dict) print("[checkpoint] Rank {}: loaded optimizer state from {}".format( rank, file_path)) def save_latest_parameters(checkpoint_dir, iteration, model, optimizer=None): file_path = "{}/step-{}".format(checkpoint_dir, iteration) model_dict = model.state_dict() dg.save_dygraph(model_dict, file_path) print("[checkpoint] Saved model to {}".format(file_path)) if optimizer: opt_dict = optimizer.state_dict() dg.save_dygraph(opt_dict, file_path) print("[checkpoint] Saved optimzier state to {}".format(file_path))