# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import logging import argparse import dataclasses from pathlib import Path import yaml import dacite import json import paddle import numpy as np from paddle import nn from paddle.nn import functional as F from paddle import distributed as dist from paddle.io import DataLoader, DistributedBatchSampler from paddle.optimizer import Adam # No RAdaom from paddle.optimizer.lr import StepDecay from paddle import DataParallel from visualdl import LogWriter from parakeet.datasets.data_table import DataTable from parakeet.training.updater import UpdaterBase from parakeet.training.trainer import Trainer from parakeet.training.reporter import report from parakeet.training.checkpoint import KBest, KLatest from parakeet.models.parallel_wavegan import PWGGenerator, PWGDiscriminator from parakeet.modules.stft_loss import MultiResolutionSTFTLoss from batch_fn import Clip from config import get_cfg_default from pwg_updater import PWGUpdater def train_sp(args, config): # decides device type and whether to run in parallel # setup running environment correctly if not paddle.is_compiled_with_cuda: paddle.set_device("cpu") else: paddle.set_device("gpu") world_size = paddle.distributed.get_world_size() if world_size > 1: paddle.distributed.init_parallel_env() print( f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}", ) # construct dataset for training and validation with open(args.train_metadata) as f: train_metadata = json.load(f) train_dataset = DataTable( data=train_metadata, fields=["wave_path", "feats_path"], converters={ "wave_path": np.load, "feats_path": np.load, }, ) with open(args.dev_metadata) as f: dev_metadata = json.load(f) dev_dataset = DataTable( data=dev_metadata, fields=["wave_path", "feats_path"], converters={ "wave_path": np.load, "feats_path": np.load, }, ) # collate function and dataloader train_sampler = DistributedBatchSampler( train_dataset, batch_size=config.batch_size, shuffle=True, drop_last=True) dev_sampler = DistributedBatchSampler( dev_dataset, batch_size=config.batch_size, shuffle=False, drop_last=False) print("samplers done!") train_batch_fn = Clip( batch_max_steps=config.batch_max_steps, hop_size=config.hop_length, aux_context_window=config.generator_params.aux_context_window) train_dataloader = DataLoader( train_dataset, batch_sampler=train_sampler, collate_fn=train_batch_fn, # TODO(defaine collate fn) num_workers=config.num_workers) dev_dataloader = DataLoader( dev_dataset, batch_sampler=dev_sampler, collate_fn=train_batch_fn, # TODO(defaine collate fn) num_workers=config.num_workers) print("dataloaders done!") generator = PWGGenerator(**config["generator_params"]) discriminator = PWGDiscriminator(**config["discriminator_params"]) if world_size > 1: generator = DataParallel(generator) discriminator = DataParallel(discriminator) print("models done!") criterion_stft = MultiResolutionSTFTLoss(**config["stft_loss_params"]) criterion_mse = nn.MSELoss() print("criterions done!") lr_schedule_g = StepDecay(**config["generator_scheduler_params"]) optimizer_g = Adam( lr_schedule_g, parameters=generator.parameters(), **config["generator_optimizer_params"]) lr_schedule_d = StepDecay(**config["discriminator_scheduler_params"]) optimizer_d = Adam( lr_schedule_d, parameters=discriminator.parameters(), **config["discriminator_optimizer_params"]) print("optimizers done!") output_dir = Path(args.output_dir) log_writer = None if dist.get_rank() == 0: output_dir.mkdir(parents=True, exist_ok=True) log_writer = LogWriter(str(output_dir)) updater = PWGUpdater( models={ "generator": generator, "discriminator": discriminator, }, optimizers={ "generator": optimizer_g, "discriminator": optimizer_d, }, criterions={ "stft": criterion_stft, "mse": criterion_mse, }, schedulers={ "generator": lr_schedule_g, "discriminator": lr_schedule_d, }, dataloaders={ "train": train_dataloader, "dev": dev_dataloader, }, discriminator_train_start_steps=config.discriminator_train_start_steps, lambda_adv=config.lambda_adv, ) trainer = Trainer( updater, stop_trigger=(config.train_max_steps, "iteration"), out=output_dir, ) trainer.run() def main(): # parse args and config and redirect to train_sp parser = argparse.ArgumentParser(description="Train a ParallelWaveGAN " "model with Baker Mandrin TTS dataset.") parser.add_argument( "--config", type=str, help="config file to overwrite default config") parser.add_argument("--train-metadata", type=str, help="training data") parser.add_argument("--dev-metadata", type=str, help="dev data") parser.add_argument("--output-dir", type=str, help="output dir") parser.add_argument( "--nprocs", type=int, default=1, help="number of processes") parser.add_argument("--verbose", type=int, default=1, help="verbose") args = parser.parse_args() config = get_cfg_default() if args.config: config.merge_from_file(args.config) print("========Args========") print(yaml.safe_dump(vars(args))) print("========Config========") print(config) print( f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}" ) # dispatch if args.nprocs > 1: dist.spawn(train_sp, (args, config), nprocs=args.nprocs) else: train_sp(args, config) if __name__ == "__main__": main()