# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Normalize feature files and dump them.""" import argparse import logging import os from operator import itemgetter from pathlib import Path import numpy as np import yaml import jsonlines from sklearn.preprocessing import StandardScaler from tqdm import tqdm from parakeet.datasets.data_table import DataTable from config import get_cfg_default def main(): """Run preprocessing process.""" parser = argparse.ArgumentParser( description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)." ) parser.add_argument( "--metadata", type=str, required=True, help="directory including feature files to be normalized. " "you need to specify either *-scp or rootdir.") parser.add_argument( "--dumpdir", type=str, required=True, help="directory to dump normalized feature files.") parser.add_argument( "--stats", type=str, required=True, help="statistics file.") parser.add_argument( "--skip-wav-copy", default=False, action="store_true", help="whether to skip the copy of wav files.") parser.add_argument( "--config", type=str, help="yaml format configuration file.") parser.add_argument( "--verbose", type=int, default=1, help="logging level. higher is more logging. (default=1)") args = parser.parse_args() # set logger if args.verbose > 1: logging.basicConfig( level=logging.DEBUG, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" ) elif args.verbose > 0: logging.basicConfig( level=logging.INFO, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" ) else: logging.basicConfig( level=logging.WARN, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s" ) logging.warning('Skip DEBUG/INFO messages') # load config config = get_cfg_default() if args.config: config.merge_from_file(args.config) # check directory existence dumpdir = Path(args.dumpdir).resolve() dumpdir.mkdir(parents=True, exist_ok=True) # get dataset with jsonlines.open(args.metadata, 'r') as reader: metadata = list(reader) dataset = DataTable( metadata, fields=["utt_id", "wave", "feats"], converters={ 'utt_id': None, 'wave': None if args.skip_wav_copy else np.load, 'feats': np.load, }) logging.info(f"The number of files = {len(dataset)}.") # restore scaler scaler = StandardScaler() scaler.mean_ = np.load(args.stats)[0] scaler.scale_ = np.load(args.stats)[1] # from version 0.23.0, this information is needed scaler.n_features_in_ = scaler.mean_.shape[0] # process each file output_metadata = [] for item in tqdm(dataset): utt_id = item['utt_id'] wave = item['wave'] mel = item['feats'] # normalize mel = scaler.transform(mel) # save mel_path = dumpdir / f"{utt_id}-feats.npy" np.save(mel_path, mel.astype(np.float32), allow_pickle=False) if not args.skip_wav_copy: wav_path = dumpdir / f"{utt_id}-wave.npy" np.save(wav_path, wave.astype(np.float32), allow_pickle=False) else: wav_path = wave output_metadata.append({ 'utt_id': utt_id, 'wave': str(wav_path), 'feats': str(mel_path), }) output_metadata.sort(key=itemgetter('utt_id')) output_metadata_path = Path(args.dumpdir) / "metadata.jsonl" with jsonlines.open(output_metadata_path, 'w') as writer: for item in output_metadata: writer.write(item) logging.info(f"metadata dumped into {output_metadata_path}") if __name__ == "__main__": main()