# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import shutil import numpy as np import paddle from paddle import nn from paddle.optimizer import Adam from itertools import count from parakeet.training.updater import StandardUpdater from parakeet.training.trainer import Trainer from parakeet.training.extensions.snapshot import Snapshot def test_snapshot(): model = nn.Linear(3, 4) optimizer = Adam(parameters=model.parameters()) # use a simplest iterable object as dataloader dataloader = count() # hack the training proecss: training does nothing except increse iteration updater = StandardUpdater(model, optimizer, dataloader=dataloader) updater.update_core = lambda x: None trainer = Trainer( updater, stop_trigger=(1000, 'iteration'), out='temp_test_snapshot') shutil.rmtree(trainer.out, ignore_errors=True) snap = Snapshot(max_size=5) trigger = (10, 'iteration') trainer.extend(snap, name='snapshot', trigger=trigger, priority=0) trainer.run() checkpoint_dir = trainer.out / "checkpoints" snapshots = sorted(list(checkpoint_dir.glob("snapshot_iter_*.pdz"))) for snap in snapshots: print(snap) assert len(snapshots) == 5 shutil.rmtree(trainer.out)