# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Variance predictor related modules.""" import paddle from paddle import nn from typeguard import check_argument_types from parakeet.modules.layer_norm import LayerNorm from parakeet.modules.masked_fill import masked_fill class VariancePredictor(nn.Layer): """Variance predictor module. This is a module of variacne predictor described in `FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`_. .. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`: https://arxiv.org/abs/2006.04558 """ def __init__( self, idim: int, n_layers: int=2, n_chans: int=384, kernel_size: int=3, bias: bool=True, dropout_rate: float=0.5, ): """Initilize duration predictor module. Parameters ---------- idim : int Input dimension. n_layers : int, optional Number of convolutional layers. n_chans : int, optional Number of channels of convolutional layers. kernel_size : int, optional Kernel size of convolutional layers. dropout_rate : float, optional Dropout rate. """ assert check_argument_types() super().__init__() self.conv = nn.LayerList() for idx in range(n_layers): in_chans = idim if idx == 0 else n_chans self.conv.append( nn.Sequential( nn.Conv1D( in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias_attr=True, ), nn.ReLU(), LayerNorm(n_chans, dim=1), nn.Dropout(dropout_rate), )) self.linear = nn.Linear(n_chans, 1, bias_attr=True) def forward(self, xs: paddle.Tensor, x_masks: paddle.Tensor=None) -> paddle.Tensor: """Calculate forward propagation. Parameters ---------- xs : Tensor Batch of input sequences (B, Tmax, idim). x_masks : Tensor(bool), optional Batch of masks indicating padded part (B, Tmax, 1). Returns ---------- Tensor Batch of predicted sequences (B, Tmax, 1). """ # (B, idim, Tmax) xs = xs.transpose([0, 2, 1]) # (B, C, Tmax) for f in self.conv: # (B, C, Tmax) xs = f(xs) # (B, Tmax, 1) xs = self.linear(xs.transpose([0, 2, 1])) if x_masks is not None: xs = masked_fill(xs, x_masks, 0.0) return xs