import math import paddle from paddle import nn from paddle.nn import functional as F from paddle.nn import initializer as I from parakeet.modules.attention import _split_heads, _concat_heads, drop_head, scaled_dot_product_attention from parakeet.modules.transformer import PositionwiseFFN from parakeet.modules import masking from parakeet.modules.conv import Conv1dBatchNorm from parakeet.modules import positional_encoding as pe __all__ = ["TransformerTTS"] # Transformer TTS's own implementation of transformer class MultiheadAttention(nn.Layer): """ Multihead scaled dot product attention with drop head. See [Scheduled DropHead: A Regularization Method for Transformer Models](https://arxiv.org/abs/2004.13342) for details. Another deviation is that it concats the input query and context vector before applying the output projection. """ def __init__(self, model_dim, num_heads, k_dim=None, v_dim=None, k_input_dim=None, v_input_dim=None): """ Args: model_dim (int): the feature size of query. num_heads (int): the number of attention heads. k_dim (int, optional): feature size of the key of each scaled dot product attention. If not provided, it is set to model_dim / num_heads. Defaults to None. v_dim (int, optional): feature size of the key of each scaled dot product attention. If not provided, it is set to model_dim / num_heads. Defaults to None. Raises: ValueError: if model_dim is not divisible by num_heads """ super(MultiheadAttention, self).__init__() if model_dim % num_heads !=0: raise ValueError("model_dim must be divisible by num_heads") depth = model_dim // num_heads k_dim = k_dim or depth v_dim = v_dim or depth k_input_dim = k_input_dim or model_dim v_input_dim = v_input_dim or model_dim self.affine_q = nn.Linear(model_dim, num_heads * k_dim) self.affine_k = nn.Linear(k_input_dim, num_heads * k_dim) self.affine_v = nn.Linear(v_input_dim, num_heads * v_dim) self.affine_o = nn.Linear(model_dim + num_heads * v_dim, model_dim) self.num_heads = num_heads self.model_dim = model_dim def forward(self, q, k, v, mask, drop_n_heads=0): """ Compute context vector and attention weights. Args: q (Tensor): shape(batch_size, time_steps_q, model_dim), the queries. k (Tensor): shape(batch_size, time_steps_k, model_dim), the keys. v (Tensor): shape(batch_size, time_steps_k, model_dim), the values. mask (Tensor): shape(batch_size, times_steps_q, time_steps_k) or broadcastable shape, dtype: float32 or float64, the mask. Returns: (out, attention_weights) out (Tensor), shape(batch_size, time_steps_q, model_dim), the context vector. attention_weights (Tensor): shape(batch_size, times_steps_q, time_steps_k), the attention weights. """ q_in = q q = _split_heads(self.affine_q(q), self.num_heads) # (B, h, T, C) k = _split_heads(self.affine_k(k), self.num_heads) v = _split_heads(self.affine_v(v), self.num_heads) mask = paddle.unsqueeze(mask, 1) # unsqueeze for the h dim context_vectors, attention_weights = scaled_dot_product_attention( q, k, v, mask) context_vectors = drop_head(context_vectors, drop_n_heads, self.training) context_vectors = _concat_heads(context_vectors) # (B, T, h*C) concat_feature = paddle.concat([q_in, context_vectors], -1) out = self.affine_o(concat_feature) return out, attention_weights class TransformerEncoderLayer(nn.Layer): """ Transformer encoder layer. """ def __init__(self, d_model, n_heads, d_ffn, dropout=0.): """ Args: d_model (int): the feature size of the input, and the output. n_heads (int): the number of heads in the internal MultiHeadAttention layer. d_ffn (int): the hidden size of the internal PositionwiseFFN. dropout (float, optional): the probability of the dropout in MultiHeadAttention and PositionwiseFFN. Defaults to 0. """ super(TransformerEncoderLayer, self).__init__() self.self_mha = MultiheadAttention(d_model, n_heads) self.layer_norm1 = nn.LayerNorm([d_model], epsilon=1e-6) self.ffn = PositionwiseFFN(d_model, d_ffn, dropout) self.layer_norm2 = nn.LayerNorm([d_model], epsilon=1e-6) def forward(self, x, mask): """ Args: x (Tensor): shape(batch_size, time_steps, d_model), the decoder input. mask (Tensor): shape(batch_size, time_steps), the padding mask. Returns: (x, attn_weights) x (Tensor): shape(batch_size, time_steps, d_model), the decoded. attn_weights (Tensor), shape(batch_size, n_heads, time_steps, time_steps), self attention. """ # pre norm x_in = x x = self.layer_norm1(x) context_vector, attn_weights = self.self_mha(x, x, x, paddle.unsqueeze(mask, 1)) x = x_in + context_vector # here, the order can be tuned # pre norm x = x + self.ffn(self.layer_norm2(x)) return x, attn_weights class TransformerDecoderLayer(nn.Layer): """ Transformer decoder layer. """ def __init__(self, d_model, n_heads, d_ffn, dropout=0., d_encoder=None): """ Args: d_model (int): the feature size of the input, and the output. n_heads (int): the number of heads in the internal MultiHeadAttention layer. d_ffn (int): the hidden size of the internal PositionwiseFFN. dropout (float, optional): the probability of the dropout in MultiHeadAttention and PositionwiseFFN. Defaults to 0. """ super(TransformerDecoderLayer, self).__init__() self.self_mha = MultiheadAttention(d_model, n_heads) self.layer_norm1 = nn.LayerNorm([d_model], epsilon=1e-6) self.cross_mha = MultiheadAttention(d_model, n_heads, k_input_dim=d_encoder, v_input_dim=d_encoder) self.layer_norm2 = nn.LayerNorm([d_model], epsilon=1e-6) self.ffn = PositionwiseFFN(d_model, d_ffn, dropout) self.layer_norm3 = nn.LayerNorm([d_model], epsilon=1e-6) def forward(self, q, k, v, encoder_mask, decoder_mask): """ Args: q (Tensor): shape(batch_size, time_steps_q, d_model), the decoder input. k (Tensor): shape(batch_size, time_steps_k, d_model), keys. v (Tensor): shape(batch_size, time_steps_k, d_model), values encoder_mask (Tensor): shape(batch_size, time_steps_k) encoder padding mask. decoder_mask (Tensor): shape(batch_size, time_steps_q, time_steps_q) or broadcastable shape, decoder padding mask. Returns: (q, self_attn_weights, cross_attn_weights) q (Tensor): shape(batch_size, time_steps_q, d_model), the decoded. self_attn_weights (Tensor), shape(batch_size, n_heads, time_steps_q, time_steps_q), decoder self attention. cross_attn_weights (Tensor), shape(batch_size, n_heads, time_steps_q, time_steps_k), decoder-encoder cross attention. """ # pre norm q_in = q q = self.layer_norm1(q) context_vector, self_attn_weights = self.self_mha(q, q, q, decoder_mask) q = q_in + context_vector # pre norm q_in = q q = self.layer_norm2(q) context_vector, cross_attn_weights = self.cross_mha(q, k, v, paddle.unsqueeze(encoder_mask, 1)) q = q_in + context_vector # pre norm q = q + self.ffn(self.layer_norm3(q)) return q, self_attn_weights, cross_attn_weights class TransformerEncoder(nn.LayerList): def __init__(self, d_model, n_heads, d_ffn, n_layers, dropout=0.): super(TransformerEncoder, self).__init__() for _ in range(n_layers): self.append(TransformerEncoderLayer(d_model, n_heads, d_ffn, dropout)) def forward(self, x, mask): attention_weights = [] for layer in self: x, attention_weights_i = layer(x, mask) attention_weights.append(attention_weights_i) return x, attention_weights class TransformerDecoder(nn.LayerList): def __init__(self, d_model, n_heads, d_ffn, n_layers, dropout=0., d_encoder=None): super(TransformerDecoder, self).__init__() for _ in range(n_layers): self.append(TransformerDecoderLayer(d_model, n_heads, d_ffn, dropout, d_encoder=d_encoder)) def forward(self, q, k, v, encoder_mask, decoder_mask): self_attention_weights = [] cross_attention_weights = [] for layer in self: q, self_attention_weights_i, cross_attention_weights_i = layer(q, k, v, encoder_mask, decoder_mask) self_attention_weights.append(self_attention_weights_i) cross_attention_weights.append(cross_attention_weights_i) return q, self_attention_weights, cross_attention_weights class MLPPreNet(nn.Layer): def __init__(self, d_input, d_hidden, d_output, dropout): super(MLPPreNet, self).__init__() self.lin1 = nn.Linear(d_input, d_hidden) self.dropout1 = nn.Dropout(dropout) self.lin2 = nn.Linear(d_hidden, d_output) self.dropout2 = nn.Dropout(dropout) def forward(self, x): # the original code said also use dropout in inference return self.dropout2(F.relu(self.lin2(self.dropout1(F.relu(self.lin1(x)))))) class CNNPostNet(nn.Layer): def __init__(self, d_input, d_hidden, d_output, kernel_size, n_layers): super(CNNPostNet, self).__init__() self.convs = nn.LayerList() kernel_size = kernel_size if isinstance(kernel_size, (tuple, list)) else (kernel_size, ) padding = (kernel_size[0] - 1, 0) for i in range(n_layers): c_in = d_input if i == 0 else d_hidden c_out = d_output if i == n_layers - 1 else d_hidden self.convs.append( Conv1dBatchNorm(c_in, c_out, kernel_size, padding=padding)) self.last_norm = nn.BatchNorm1D(d_output) def forward(self, x): x_in = x for layer in self.convs: x = paddle.tanh(layer(x)) x = self.last_norm(x + x_in) return x class TransformerTTS(nn.Layer): def __init__(self, vocab_size, padding_idx, d_encoder, d_decoder, d_mel, n_heads, d_ffn, encoder_layers, decoder_layers, d_prenet, d_postnet, postnet_layers, postnet_kernel_size, max_reduction_factor, dropout): super(TransformerTTS, self).__init__() # initial pe scalar is 1, though it is trainable self.pe_scalar = self.create_parameter([1], attr=I.Constant(1.)) # encoder self.encoder_prenet = nn.Embedding(vocab_size, d_encoder, padding_idx) self.encoder_pe = pe.positional_encoding(0, 1000, d_encoder) # it may be extended later self.encoder = TransformerEncoder(d_encoder, n_heads, d_ffn, encoder_layers, dropout) # decoder self.decoder_prenet = MLPPreNet(d_mel, d_prenet, d_decoder, dropout) self.decoder_pe = pe.positional_encoding(0, 1000, d_decoder) # it may be extended later self.decoder = TransformerDecoder(d_decoder, n_heads, d_ffn, decoder_layers, dropout, d_encoder=d_encoder) self.final_proj = nn.Linear(d_decoder, max_reduction_factor * d_mel) self.decoder_postnet = CNNPostNet(d_mel, d_postnet, d_mel, postnet_kernel_size, postnet_layers) self.stop_conditioner = nn.Linear(d_mel, 3) # specs self.padding_idx = padding_idx self.d_encoder = d_encoder self.d_decoder = d_decoder # start and end: though it is only used in predict # it can also be used in training dtype = paddle.get_default_dtype() self.start_vec = paddle.full([1, d_mel], 0, dtype=dtype) self.end_vec = paddle.full([1, d_mel], 0, dtype=dtype) self.stop_prob_index = 2 self.max_r = max_reduction_factor self.r = max_reduction_factor # set it every call def forward(self, text, mel, stop): encoded, encoder_attention_weights, encoder_mask = self.encode(text) mel_output, mel_intermediate, cross_attention_weights, stop_logits = self.decode(encoded, mel, encoder_mask) return mel_output, mel_intermediate, encoder_attention_weights, cross_attention_weights def encode(self, text): T_enc = text.shape[-1] embed = self.encoder_prenet(text) pe = self.encoder_pe[:T_enc, :] # (T, C) x = embed.scale(math.sqrt(self.d_encoder)) + pe * self.pe_scalar encoder_padding_mask = masking.id_mask(text, self.padding_idx, dtype=x.dtype) x = F.dropout(x, training=self.training) x, attention_weights = self.encoder(x, encoder_padding_mask) return x, attention_weights, encoder_padding_mask def decode(self, encoder_output, input, encoder_padding_mask): batch_size, T_dec, mel_dim = input.shape no_future_mask = masking.future_mask(T_dec, dtype=input.dtype) decoder_padding_mask = masking.feature_mask(input, axis=-1, dtype=input.dtype) decoder_mask = masking.combine_mask(decoder_padding_mask.unsqueeze(-1), no_future_mask) decoder_input = self.decoder_prenet(input) decoder_output, _, cross_attention_weights = self.decoder( decoder_input, encoder_output, encoder_output, encoder_padding_mask, decoder_mask) output_proj = self.final_proj(decoder_output) mel_intermediate = paddle.reshape(output_proj, [batch_size, -1, mel_dim]) stop_logits = self.stop_conditioner(mel_intermediate) mel_channel_first = paddle.transpose(mel_intermediate, [0, 2, 1]) mel_output = self.decoder_postnet(mel_channel_first) mel_output = paddle.transpose(mel_output, [0, 2, 1]) return mel_output, mel_intermediate, cross_attention_weights, stop_logits def predict(self, input, max_length=1000, verbose=True): """[summary] Args: input (Tensor): shape (T), dtype int, input text sequencce. max_length (int, optional): max decoder steps. Defaults to 1000. verbose (bool, optional): display progress bar. Defaults to True. """ text_input = paddle.unsqueeze(input, 0) # (1, T) decoder_input = paddle.unsqueeze(self.start_vec, 0) # (B=1, T, C) decoder_output = paddle.unsqueeze(self.start_vec, 0) # (B=1, T, C) # encoder the text sequence encoder_output, encoder_attentions, encoder_padding_mask = self.encode(text_input) for _ in range(int(max_length // self.r) + 1): mel_output, _, cross_attention_weights, stop_logits = self.decode( encoder_output, decoder_input, encoder_padding_mask) # extract last step and append it to decoder input decoder_input = paddle.concat([decoder_input, mel_output[:, -1:, :]], 1) # extract last r steps and append it to decoder output decoder_output = paddle.concat([decoder_output, mel_output[:, -self.r:, :]], 1) # stop condition? if paddle.argmax(stop_logits[:, -1, :]) == self.stop_prob_index: if verbose: print("Hits stop condition.") break return decoder_output[:, 1:, :], encoder_attentions, cross_attention_weights class TransformerTTSLoss(nn.Layer): def __init__(self, stop_loss_scale): super(TransformerTTSLoss, self).__init__() self.stop_loss_scale = stop_loss_scale def forward(self, ): return loss, details