# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import pickle import numpy as np from paddle.io import Dataset from parakeet.data.batch import batch_spec, batch_text_id class LJSpeech(Dataset): """A simple dataset adaptor for the processed ljspeech dataset.""" def __init__(self, root): self.root = Path(root).expanduser() records = [] with open(self.root / "metadata.pkl", 'rb') as f: metadata = pickle.load(f) for mel_name, text, phonemes, ids in metadata: mel_name = self.root / "mel" / (mel_name + ".npy") records.append((mel_name, text, phonemes, ids)) self.records = records def __getitem__(self, i): mel_name, _, _, ids = self.records[i] mel = np.load(mel_name) return ids, mel def __len__(self): return len(self.records) # decorate mel & create stop probability class Transform(object): def __init__(self, start_value, end_value): self.start_value = start_value self.end_value = end_value def __call__(self, example): ids, mel = example # ids already have and ids = np.array(ids, dtype=np.int64) # add start and end frame mel = np.pad( mel, [(0, 0), (1, 1)], mode='constant', constant_values=[(0, 0), (self.start_value, self.end_value)]) stop_labels = np.ones([mel.shape[1]], dtype=np.int64) stop_labels[-1] = 2 # actually this thing can also be done within the model return ids, mel, stop_labels class LJSpeechCollector(object): """A simple callable to batch LJSpeech examples.""" def __init__(self, padding_idx=0, padding_value=0.): self.padding_idx = padding_idx self.padding_value = padding_value def __call__(self, examples): ids = [example[0] for example in examples] mels = [example[1] for example in examples] stop_probs = [example[2] for example in examples] ids, _ = batch_text_id(ids, pad_id=self.padding_idx) mels, _ = batch_spec(mels, pad_value=self.padding_value) stop_probs, _ = batch_text_id(stop_probs, pad_id=self.padding_idx) return ids, np.transpose(mels, [0, 2, 1]), stop_probs