from network import * from tensorboardX import SummaryWriter import os from tqdm import tqdm from pathlib import Path import jsonargparse from parse import add_config_options_to_parser from pprint import pprint from parakeet.models.dataloader.jlspeech import LJSpeechLoader class MyDataParallel(dg.parallel.DataParallel): """ A data parallel proxy for model. """ def __init__(self, layers, strategy): super(MyDataParallel, self).__init__(layers, strategy) def __getattr__(self, key): if key in self.__dict__: return object.__getattribute__(self, key) elif key is "_layers": return object.__getattribute__(self, "_sub_layers")["_layers"] else: return getattr( object.__getattribute__(self, "_sub_layers")["_layers"], key) def load_checkpoint(step, model_path): model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step)) return model_dict, opti_dict def main(cfg): local_rank = dg.parallel.Env().local_rank if cfg.use_data_parallel else 0 nranks = dg.parallel.Env().nranks if cfg.use_data_parallel else 1 if local_rank == 0: # Print the whole config setting. pprint(jsonargparse.namespace_to_dict(cfg)) global_step = 0 place = (fluid.CUDAPlace(dg.parallel.Env().dev_id) if cfg.use_data_parallel else fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()) if not os.path.exists(cfg.log_dir): os.mkdir(cfg.log_dir) path = os.path.join(cfg.log_dir,'postnet') writer = SummaryWriter(path) if local_rank == 0 else None with dg.guard(place): model = ModelPostNet(cfg) model.train() optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(cfg.warm_up_step *( cfg.lr ** 2)), cfg.warm_up_step), parameter_list=model.parameters()) if cfg.checkpoint_path is not None: model_dict, opti_dict = load_checkpoint(str(cfg.postnet_step), os.path.join(cfg.checkpoint_path, "postnet")) model.set_dict(model_dict) optimizer.set_dict(opti_dict) global_step = cfg.postnet_step print("load checkpoint!!!") if cfg.use_data_parallel: strategy = dg.parallel.prepare_context() model = MyDataParallel(model, strategy) reader = LJSpeechLoader(cfg, nranks, local_rank, is_vocoder=True).reader() for epoch in range(cfg.epochs): pbar = tqdm(reader) for i, data in enumerate(pbar): pbar.set_description('Processing at epoch %d'%epoch) mel, mag = data mag = dg.to_variable(mag.numpy()) mel = dg.to_variable(mel.numpy()) global_step += 1 mag_pred = model(mel) loss = layers.mean(layers.abs(layers.elementwise_sub(mag_pred, mag))) if cfg.use_data_parallel: loss = model.scale_loss(loss) loss.backward() model.apply_collective_grads() else: loss.backward() optimizer.minimize(loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(cfg.grad_clip_thresh)) model.clear_gradients() if local_rank==0: writer.add_scalars('training_loss',{ 'loss':loss.numpy(), }, global_step) if global_step % cfg.save_step == 0: if not os.path.exists(cfg.save_path): os.mkdir(cfg.save_path) save_path = os.path.join(cfg.save_path,'postnet/%d' % global_step) dg.save_dygraph(model.state_dict(), save_path) dg.save_dygraph(optimizer.state_dict(), save_path) if local_rank==0: writer.close() if __name__ == '__main__': parser = jsonargparse.ArgumentParser(description="Train postnet model", formatter_class='default_argparse') add_config_options_to_parser(parser) cfg = parser.parse_args('-c ./config/train_postnet.yaml'.split()) main(cfg)