ParakeetRebeccaRosario/parakeet/models/waveflow.py

910 lines
28 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import time
from typing import List
from typing import Tuple
from typing import Union
import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle.nn import initializer as I
from parakeet.modules import geometry as geo
from parakeet.utils import checkpoint
__all__ = ["WaveFlow", "ConditionalWaveFlow", "WaveFlowLoss"]
def fold(x, n_group):
r"""Fold audio or spectrogram's temporal dimension in to groups.
Parameters
----------
x : Tensor [shape=(\*, time_steps)
The input tensor.
n_group : int
The size of a group.
Returns
---------
Tensor : [shape=(\*, time_steps // n_group, group)]
Folded tensor.
"""
spatial_shape = list(x.shape[:-1])
time_steps = paddle.shape(x)[-1]
new_shape = spatial_shape + [time_steps // n_group, n_group]
return paddle.reshape(x, new_shape)
class UpsampleNet(nn.LayerList):
"""Layer to upsample mel spectrogram to the same temporal resolution with
the corresponding waveform.
It consists of several conv2dtranspose layers which perform deconvolution
on mel and time dimension.
Parameters
----------
upscale_factors : List[int], optional
Time upsampling factors for each Conv2DTranspose Layer.
The ``UpsampleNet`` contains ``len(upscale_factor)`` Conv2DTranspose
Layers. Each upscale_factor is used as the ``stride`` for the
corresponding Conv2DTranspose. Defaults to [16, 16], this the default
upsampling factor is 256.
Notes
------
``np.prod(upscale_factors)`` should equals the ``hop_length`` of the stft
transformation used to extract spectrogram features from audio.
For example, ``16 * 16 = 256``, then the spectrogram extracted with a stft
transformation whose ``hop_length`` equals 256 is suitable.
See Also
---------
``librosa.core.stft``
"""
def __init__(self, upsample_factors):
super().__init__()
for factor in upsample_factors:
std = math.sqrt(1 / (3 * 2 * factor))
init = I.Uniform(-std, std)
self.append(
nn.utils.weight_norm(
nn.Conv2DTranspose(
1,
1, (3, 2 * factor),
padding=(1, factor // 2),
stride=(1, factor),
weight_attr=init,
bias_attr=init)))
# upsample factors
self.upsample_factor = np.prod(upsample_factors)
self.upsample_factors = upsample_factors
def forward(self, x, trim_conv_artifact=False):
r"""Forward pass of the ``UpsampleNet``.
Parameters
-----------
x : Tensor [shape=(batch_size, input_channels, time_steps)]
The input spectrogram.
trim_conv_artifact : bool, optional
Trim deconvolution artifact at each layer. Defaults to False.
Returns
--------
Tensor: [shape=(batch_size, input_channels, time_steps \* upsample_factor)]
The upsampled spectrogram.
Notes
--------
If trim_conv_artifact is ``True``, the output time steps is less
than ``time_steps \* upsample_factors``.
"""
x = paddle.unsqueeze(x, 1) # (B, C, T) -> (B, 1, C, T)
for layer in self:
x = layer(x)
if trim_conv_artifact:
time_cutoff = layer._kernel_size[1] - layer._stride[1]
x = x[:, :, :, :-time_cutoff]
x = F.leaky_relu(x, 0.4)
x = paddle.squeeze(x, 1) # back to (B, C, T)
return x
class ResidualBlock(nn.Layer):
"""ResidualBlock, the basic unit of ResidualNet used in WaveFlow.
It has a conv2d layer, which has causal padding in height dimension and
same paddign in width dimension. It also has projection for the condition
and output.
Parameters
----------
channels : int
Feature size of the input.
cond_channels : int
Featuer size of the condition.
kernel_size : Tuple[int]
Kernel size of the Convolution2d applied to the input.
dilations : int
Dilations of the Convolution2d applied to the input.
"""
def __init__(self, channels, cond_channels, kernel_size, dilations):
super().__init__()
# input conv
std = math.sqrt(1 / channels * np.prod(kernel_size))
init = I.Uniform(-std, std)
receptive_field = [
1 + (k - 1) * d for (k, d) in zip(kernel_size, dilations)
]
rh, rw = receptive_field
paddings = [rh - 1, 0, rw // 2, (rw - 1) // 2] # causal & same
conv = nn.Conv2D(
channels,
2 * channels,
kernel_size,
padding=paddings,
dilation=dilations,
weight_attr=init,
bias_attr=init)
self.conv = nn.utils.weight_norm(conv)
self.rh = rh
self.rw = rw
self.dilations = dilations
# condition projection
std = math.sqrt(1 / cond_channels)
init = I.Uniform(-std, std)
condition_proj = nn.Conv2D(
cond_channels,
2 * channels, (1, 1),
weight_attr=init,
bias_attr=init)
self.condition_proj = nn.utils.weight_norm(condition_proj)
# parametric residual & skip connection
std = math.sqrt(1 / channels)
init = I.Uniform(-std, std)
out_proj = nn.Conv2D(
channels, 2 * channels, (1, 1), weight_attr=init, bias_attr=init)
self.out_proj = nn.utils.weight_norm(out_proj)
def forward(self, x, condition):
"""Compute output for a whole folded sequence.
Parameters
----------
x : Tensor [shape=(batch_size, channel, height, width)]
The input.
condition : Tensor [shape=(batch_size, condition_channel, height, width)]
The local condition.
Returns
-------
res : Tensor [shape=(batch_size, channel, height, width)]
The residual output.
skip : Tensor [shape=(batch_size, channel, height, width)]
The skip output.
"""
x_in = x
x = self.conv(x)
x += self.condition_proj(condition)
content, gate = paddle.chunk(x, 2, axis=1)
x = paddle.tanh(content) * F.sigmoid(gate)
x = self.out_proj(x)
res, skip = paddle.chunk(x, 2, axis=1)
res = x_in + res
return res, skip
def start_sequence(self):
"""Prepare the layer for incremental computation of causal
convolution. Reset the buffer for causal convolution.
Raises:
ValueError: If not in evaluation mode.
"""
if self.training:
raise ValueError("Only use start sequence at evaluation mode.")
self._conv_buffer = paddle.zeros([1])
# NOTE: call self.conv's weight norm hook expliccitly since
# its weight will be visited directly in `add_input` without
# calling its `__call__` method. If we do not trigger the weight
# norm hook, the weight may be outdated. e.g. after loading from
# a saved checkpoint
# see also: https://github.com/pytorch/pytorch/issues/47588
for hook in self.conv._forward_pre_hooks.values():
hook(self.conv, None)
def add_input(self, x_row, condition_row):
"""Compute the output for a row and update the buffer.
Parameters
----------
x_row : Tensor [shape=(batch_size, channel, 1, width)]
A row of the input.
condition_row : Tensor [shape=(batch_size, condition_channel, 1, width)]
A row of the condition.
Returns
-------
res : Tensor [shape=(batch_size, channel, 1, width)]
A row of the the residual output.
skip : Tensor [shape=(batch_size, channel, 1, width)]
A row of the skip output.
"""
x_row_in = x_row
if len(paddle.shape(self._conv_buffer)) == 1:
self._init_buffer(x_row)
self._update_buffer(x_row)
rw = self.rw
x_row = F.conv2d(
self._conv_buffer,
self.conv.weight,
self.conv.bias,
padding=[0, 0, rw // 2, (rw - 1) // 2],
dilation=self.dilations)
x_row += self.condition_proj(condition_row)
content, gate = paddle.chunk(x_row, 2, axis=1)
x_row = paddle.tanh(content) * F.sigmoid(gate)
x_row = self.out_proj(x_row)
res, skip = paddle.chunk(x_row, 2, axis=1)
res = x_row_in + res
return res, skip
def _init_buffer(self, input):
batch_size, channels, _, width = input.shape
self._conv_buffer = paddle.zeros(
[batch_size, channels, self.rh, width], dtype=input.dtype)
def _update_buffer(self, input):
self._conv_buffer = paddle.concat(
[self._conv_buffer[:, :, 1:, :], input], axis=2)
class ResidualNet(nn.LayerList):
"""A stack of several ResidualBlocks. It merges condition at each layer.
Parameters
----------
n_layer : int
Number of ResidualBlocks in the ResidualNet.
residual_channels : int
Feature size of each ResidualBlocks.
condition_channels : int
Feature size of the condition.
kernel_size : Tuple[int]
Kernel size of each ResidualBlock.
dilations_h : List[int]
Dilation in height dimension of every ResidualBlock.
Raises
------
ValueError
If the length of dilations_h does not equals n_layers.
"""
def __init__(self,
n_layer: int,
residual_channels: int,
condition_channels: int,
kernel_size: Tuple[int],
dilations_h: List[int]):
if len(dilations_h) != n_layer:
raise ValueError(
"number of dilations_h should equals num of layers")
super(ResidualNet, self).__init__()
for i in range(n_layer):
dilation = (dilations_h[i], 2**i)
layer = ResidualBlock(residual_channels, condition_channels,
kernel_size, dilation)
self.append(layer)
def forward(self, x, condition):
"""Comput the output of given the input and the condition.
Parameters
-----------
x : Tensor [shape=(batch_size, channel, height, width)]
The input.
condition : Tensor [shape=(batch_size, condition_channel, height, width)]
The local condition.
Returns
--------
Tensor : [shape=(batch_size, channel, height, width)]
The output, which is an aggregation of all the skip outputs.
"""
skip_connections = []
for layer in self:
x, skip = layer(x, condition)
skip_connections.append(skip)
out = paddle.sum(paddle.stack(skip_connections, 0), 0)
return out
def start_sequence(self):
"""Prepare the layer for incremental computation.
"""
for layer in self:
layer.start_sequence()
def add_input(self, x_row, condition_row):
"""Compute the output for a row and update the buffers.
Parameters
----------
x_row : Tensor [shape=(batch_size, channel, 1, width)]
A row of the input.
condition_row : Tensor [shape=(batch_size, condition_channel, 1, width)]
A row of the condition.
Returns
-------
res : Tensor [shape=(batch_size, channel, 1, width)]
A row of the the residual output.
skip : Tensor [shape=(batch_size, channel, 1, width)]
A row of the skip output.
"""
skip_connections = []
for layer in self:
x_row, skip = layer.add_input(x_row, condition_row)
skip_connections.append(skip)
out = paddle.sum(paddle.stack(skip_connections, 0), 0)
return out
class Flow(nn.Layer):
"""A bijection (Reversable layer) that transform a density of latent
variables p(Z) into a complex data distribution p(X).
It's an auto regressive flow. The ``forward`` method implements the
probability density estimation. The ``inverse`` method implements the
sampling.
Parameters
----------
n_layers : int
Number of ResidualBlocks in the Flow.
channels : int
Feature size of the ResidualBlocks.
mel_bands : int
Feature size of the mel spectrogram (mel bands).
kernel_size : Tuple[int]
Kernel size of each ResisualBlocks in the Flow.
n_group : int
Number of timesteps to the folded into a group.
"""
dilations_dict = {
8: [1, 1, 1, 1, 1, 1, 1, 1],
16: [1, 1, 1, 1, 1, 1, 1, 1],
32: [1, 2, 4, 1, 2, 4, 1, 2],
64: [1, 2, 4, 8, 16, 1, 2, 4],
128: [1, 2, 4, 8, 16, 32, 64, 1]
}
def __init__(self, n_layers, channels, mel_bands, kernel_size, n_group):
super().__init__()
# input projection
self.input_proj = nn.utils.weight_norm(
nn.Conv2D(
1,
channels, (1, 1),
weight_attr=I.Uniform(-1., 1.),
bias_attr=I.Uniform(-1., 1.)))
# residual net
self.resnet = ResidualNet(n_layers, channels, mel_bands, kernel_size,
self.dilations_dict[n_group])
# output projection
self.output_proj = nn.Conv2D(
channels,
2, (1, 1),
weight_attr=I.Constant(0.),
bias_attr=I.Constant(0.))
# specs
self.n_group = n_group
def _predict_parameters(self, x, condition):
x = self.input_proj(x)
x = self.resnet(x, condition)
bijection_params = self.output_proj(x)
logs, b = paddle.chunk(bijection_params, 2, axis=1)
return logs, b
def _transform(self, x, logs, b):
z_0 = x[:, :, :1, :] # the first row, just copy it
z_out = x[:, :, 1:, :] * paddle.exp(logs) + b
z_out = paddle.concat([z_0, z_out], axis=2)
return z_out
def forward(self, x, condition):
"""Probability density estimation. It is done by inversely transform
a sample from p(X) into a sample from p(Z).
Parameters
-----------
x : Tensor [shape=(batch, 1, height, width)]
A input sample of the distribution p(X).
condition : Tensor [shape=(batch, condition_channel, height, width)]
The local condition.
Returns
--------
z (Tensor): shape(batch, 1, height, width), the transformed sample.
Tuple[Tensor, Tensor]
The parameter of the transformation.
logs (Tensor): shape(batch, 1, height - 1, width), the log scale
of the transformation from x to z.
b (Tensor): shape(batch, 1, height - 1, width), the shift of the
transformation from x to z.
"""
# (B, C, H-1, W)
logs, b = self._predict_parameters(x[:, :, :-1, :],
condition[:, :, 1:, :])
z = self._transform(x, logs, b)
return z, (logs, b)
def _predict_row_parameters(self, x_row, condition_row):
x_row = self.input_proj(x_row)
x_row = self.resnet.add_input(x_row, condition_row)
bijection_params = self.output_proj(x_row)
logs, b = paddle.chunk(bijection_params, 2, axis=1)
return logs, b
def _inverse_transform_row(self, z_row, logs, b):
x_row = (z_row - b) * paddle.exp(-logs)
return x_row
def _inverse_row(self, z_row, x_row, condition_row):
logs, b = self._predict_row_parameters(x_row, condition_row)
x_next_row = self._inverse_transform_row(z_row, logs, b)
return x_next_row, (logs, b)
def _start_sequence(self):
self.resnet.start_sequence()
def inverse(self, z, condition):
"""Sampling from the the distrition p(X). It is done by sample form
p(Z) and transform the sample. It is a auto regressive transformation.
Parameters
-----------
z : Tensor [shape=(batch, 1, height, width)]
A sample of the distribution p(Z).
condition : Tensor [shape=(batch, condition_channel, height, width)]
The local condition.
Returns
---------
x : Tensor [shape=(batch, 1, height, width)]
The transformed sample.
Tuple[Tensor, Tensor]
The parameter of the transformation.
logs (Tensor): shape(batch, 1, height - 1, width), the log scale
of the transformation from x to z.
b (Tensor): shape(batch, 1, height - 1, width), the shift of the
transformation from x to z.
"""
z_0 = z[:, :, :1, :]
x = paddle.zeros_like(z)
x[:, :, :1, :] = z_0
self._start_sequence()
num_step = paddle.ones([1], dtype='int32') * (self.n_group)
for i in range(1, num_step):
x_row = x[:, :, i - 1:i, :]
z_row = z[:, :, i:i + 1, :]
condition_row = condition[:, :, i:i + 1, :]
x_next_row, (logs, b) = self._inverse_row(z_row, x_row,
condition_row)
x[:, :, i:i + 1, :] = x_next_row
return x
class WaveFlow(nn.LayerList):
"""An Deep Reversible layer that is composed of severel auto regressive
flows.
Parameters
-----------
n_flows : int
Number of flows in the WaveFlow model.
n_layers : int
Number of ResidualBlocks in each Flow.
n_group : int
Number of timesteps to fold as a group.
channels : int
Feature size of each ResidualBlock.
mel_bands : int
Feature size of mel spectrogram (mel bands).
kernel_size : Union[int, List[int]]
Kernel size of the convolution layer in each ResidualBlock.
"""
def __init__(self, n_flows, n_layers, n_group, channels, mel_bands,
kernel_size):
if n_group % 2 or n_flows % 2:
raise ValueError(
"number of flows and number of group must be even "
"since a permutation along group among flows is used.")
super().__init__()
for _ in range(n_flows):
self.append(
Flow(n_layers, channels, mel_bands, kernel_size, n_group))
# permutations in h
self.perms = self._create_perm(n_group, n_flows)
# specs
self.n_group = n_group
self.n_flows = n_flows
def _create_perm(self, n_group, n_flows):
indices = list(range(n_group))
half = n_group // 2
perms = []
for i in range(n_flows):
if i < n_flows // 2:
perm = indices[::-1]
else:
perm = list(reversed(indices[:half])) + list(
reversed(indices[half:]))
perm = paddle.to_tensor(perm)
self.register_buffer(perm.name, perm)
perms.append(perm)
return perms
def _trim(self, x, condition):
assert condition.shape[-1] >= x.shape[-1]
pruned_len = int(paddle.shape(x)[-1] // self.n_group * self.n_group)
if x.shape[-1] > pruned_len:
x = x[:, :pruned_len]
if condition.shape[-1] > pruned_len:
condition = condition[:, :, :pruned_len]
return x, condition
def forward(self, x, condition):
"""Probability density estimation of random variable x given the
condition.
Parameters
-----------
x : Tensor [shape=(batch_size, time_steps)]
The audio.
condition : Tensor [shape=(batch_size, condition channel, time_steps)]
The local condition (mel spectrogram here).
Returns
--------
z : Tensor [shape=(batch_size, time_steps)]
The transformed random variable.
log_det_jacobian: Tensor [shape=(1,)]
The log determinant of the jacobian of the transformation from x
to z.
"""
# x: (B, T)
# condition: (B, C, T) upsampled condition
x, condition = self._trim(x, condition)
# to (B, C, h, T//h) layout
x = paddle.unsqueeze(
paddle.transpose(fold(x, self.n_group), [0, 2, 1]), 1)
condition = paddle.transpose(
fold(condition, self.n_group), [0, 1, 3, 2])
# flows
logs_list = []
for i, layer in enumerate(self):
x, (logs, b) = layer(x, condition)
logs_list.append(logs)
# permute paddle has no shuffle dim
x = geo.shuffle_dim(x, 2, perm=self.perms[i])
condition = geo.shuffle_dim(condition, 2, perm=self.perms[i])
z = paddle.squeeze(x, 1) # (B, H, W)
batch_size = z.shape[0]
z = paddle.reshape(paddle.transpose(z, [0, 2, 1]), [batch_size, -1])
log_det_jacobian = paddle.sum(paddle.stack(logs_list))
return z, log_det_jacobian
def inverse(self, z, condition):
"""Sampling from the the distrition p(X).
It is done by sample a ``z`` form p(Z) and transform it into ``x``.
Each Flow transform .. math:: `z_{i-1}` to .. math:: `z_{i}` in an
autoregressive manner.
Parameters
----------
z : Tensor [shape=(batch, 1, time_steps]
A sample of the distribution p(Z).
condition : Tensor [shape=(batch, condition_channel, time_steps)]
The local condition.
Returns
--------
x : Tensor [shape=(batch_size, time_steps)]
The transformed sample (audio here).
"""
z, condition = self._trim(z, condition)
# to (B, C, h, T//h) layout
z = paddle.unsqueeze(
paddle.transpose(fold(z, self.n_group), [0, 2, 1]), 1)
condition = paddle.transpose(
fold(condition, self.n_group), [0, 1, 3, 2])
# reverse it flow by flow
for i in reversed(range(self.n_flows)):
z = geo.shuffle_dim(z, 2, perm=self.perms[i])
condition = geo.shuffle_dim(condition, 2, perm=self.perms[i])
z = self[i].inverse(z, condition)
x = paddle.squeeze(z, 1) # (B, H, W)
batch_size = x.shape[0]
x = paddle.reshape(paddle.transpose(x, [0, 2, 1]), [batch_size, -1])
return x
class ConditionalWaveFlow(nn.LayerList):
"""ConditionalWaveFlow, a UpsampleNet with a WaveFlow model.
Parameters
----------
upsample_factors : List[int]
Upsample factors for the upsample net.
n_flows : int
Number of flows in the WaveFlow model.
n_layers : int
Number of ResidualBlocks in each Flow.
n_group : int
Number of timesteps to fold as a group.
channels : int
Feature size of each ResidualBlock.
n_mels : int
Feature size of mel spectrogram (mel bands).
kernel_size : Union[int, List[int]]
Kernel size of the convolution layer in each ResidualBlock.
"""
def __init__(self,
upsample_factors: List[int],
n_flows: int,
n_layers: int,
n_group: int,
channels: int,
n_mels: int,
kernel_size: Union[int, List[int]]):
super().__init__()
self.encoder = UpsampleNet(upsample_factors)
self.decoder = WaveFlow(
n_flows=n_flows,
n_layers=n_layers,
n_group=n_group,
channels=channels,
mel_bands=n_mels,
kernel_size=kernel_size)
def forward(self, audio, mel):
"""Compute the transformed random variable z (x to z) and the log of
the determinant of the jacobian of the transformation from x to z.
Parameters
----------
audio : Tensor [shape=(B, T)]
The audio.
mel : Tensor [shape=(B, C_mel, T_mel)]
The mel spectrogram.
Returns
-------
z : Tensor [shape=(B, T)]
The inversely transformed random variable z (x to z)
log_det_jacobian: Tensor [shape=(1,)]
the log of the determinant of the jacobian of the transformation
from x to z.
"""
condition = self.encoder(mel)
z, log_det_jacobian = self.decoder(audio, condition)
return z, log_det_jacobian
@paddle.no_grad()
def infer(self, mel):
r"""Generate raw audio given mel spectrogram.
Parameters
----------
mel : Tensor [shape=(B, C_mel, T_mel)]
Mel spectrogram (in log-magnitude).
Returns
-------
Tensor : [shape=(B, T)]
The synthesized audio, where``T <= T_mel \* upsample_factors``.
"""
start = time.time()
condition = self.encoder(mel, trim_conv_artifact=True) # (B, C, T)
batch_size, _, time_steps = condition.shape
z = paddle.randn([batch_size, time_steps], dtype=mel.dtype)
x = self.decoder.inverse(z, condition)
end = time.time()
print("time: {}s".format(end - start))
return x
@paddle.no_grad()
def predict(self, mel):
"""Generate raw audio given mel spectrogram.
Parameters
----------
mel : np.ndarray [shape=(C_mel, T_mel)]
Mel spectrogram of an utterance(in log-magnitude).
Returns
-------
np.ndarray [shape=(T,)]
The synthesized audio.
"""
mel = paddle.to_tensor(mel)
mel = paddle.unsqueeze(mel, 0)
audio = self.infer(mel)
audio = audio[0].numpy()
return audio
@classmethod
def from_pretrained(cls, config, checkpoint_path):
"""Build a ConditionalWaveFlow model from a pretrained model.
Parameters
----------
config: yacs.config.CfgNode
model configs
checkpoint_path: Path or str
the path of pretrained model checkpoint, without extension name
Returns
-------
ConditionalWaveFlow
The model built from pretrained result.
"""
model = cls(upsample_factors=config.model.upsample_factors,
n_flows=config.model.n_flows,
n_layers=config.model.n_layers,
n_group=config.model.n_group,
channels=config.model.channels,
n_mels=config.data.n_mels,
kernel_size=config.model.kernel_size)
checkpoint.load_parameters(model, checkpoint_path=checkpoint_path)
return model
class WaveFlowLoss(nn.Layer):
"""Criterion of a WaveFlow model.
Parameters
----------
sigma : float
The standard deviation of the gaussian noise used in WaveFlow, by
default 1.0.
"""
def __init__(self, sigma=1.0):
super().__init__()
self.sigma = sigma
self.const = 0.5 * np.log(2 * np.pi) + np.log(self.sigma)
def forward(self, z, log_det_jacobian):
"""Compute the loss given the transformed random variable z and the
log_det_jacobian of transformation from x to z.
Parameters
----------
z : Tensor [shape=(B, T)]
The transformed random variable (x to z).
log_det_jacobian : Tensor [shape=(1,)]
The log of the determinant of the jacobian matrix of the
transformation from x to z.
Returns
-------
Tensor [shape=(1,)]
The loss.
"""
loss = paddle.sum(z * z) / (2 * self.sigma * self.sigma
) - log_det_jacobian
loss = loss / np.prod(z.shape)
return loss + self.const
class ConditionalWaveFlow2Infer(ConditionalWaveFlow):
def forward(self, mel):
"""Generate raw audio given mel spectrogram.
Parameters
----------
mel : np.ndarray [shape=(C_mel, T_mel)]
Mel spectrogram of an utterance(in log-magnitude).
Returns
-------
np.ndarray [shape=(T,)]
The synthesized audio.
"""
audio = self.predict(mel)
return audio