065fa32a37 | ||
---|---|---|
.. | ||
conf | ||
README.md | ||
batch_fn.py | ||
config.py | ||
fastspeech2_updater.py | ||
preprocess.sh | ||
synthesize.py | ||
synthesize.sh | ||
synthesize_e2e.py | ||
synthesize_e2e.sh | ||
train.py |
README.md
FastSpeech2 with AISHELL-3
Introduction
AISHELL-3 is a large-scale and high-fidelity multi-speaker Mandarin speech corpus which could be used to train multi-speaker Text-to-Speech (TTS) systems. We use AISHELL-3 to train a multi-speaker fastspeech2 model here.
Dataset
Download and Extract the datasaet.
Download AISHELL-3.
wget https://www.openslr.org/resources/93/data_aishell3.tgz
Extract AISHELL-3.
mkdir data_aishell3
tar zxvf data_aishell3.tgz -C data_aishell3
Get MFA result of BZNSYP and Extract it.
We use MFA2.x to get durations for aishell3_fastspeech2. You can download from here aishell3_alignment_tone.tar.gz, or train your own MFA model reference to use_mfa example (use MFA1.x now) of our repo.
Preprocess the dataset.
Assume the path to the dataset is ~/datasets/data_aishell3
.
Assume the path to the MFA result of AISHELL-3 is ./aishell3_alignment_tone
.
Run the command below to preprocess the dataset.
./preprocess.sh
Train the model
./run.sh
If you want to train fastspeech2 with cpu, please add --device=cpu
arguments for python3 train.py
in run.sh
.
Synthesize
We use parallel wavegan as the neural vocoder. Download pretrained parallel wavegan model (Trained with baker) from fastspeech2_nosil_aishell3_ckpt_0.4.zip and unzip it.
unzip parallel_wavegan_baker_ckpt_0.4.zip
synthesize.sh
can synthesize waveform from metadata.jsonl
.
synthesize_e2e.sh
can synthesize waveform from text list.
./synthesize.sh
or
./synthesize_e2e.sh
You can see the bash files for more datails of input parameters.
Pretrained Model
Pretrained Model with no sil in the edge of audios can be downloaded here. fastspeech2_nosil_aishell3_ckpt_0.4.zip
Then, you can use the following scripts to synthesize for ../sentences.txt
using pretrained fastspeech2 model.
python3 synthesize_e2e.py \
--fastspeech2-config=fastspeech2_nosil_aishell3_ckpt_0.4/default.yaml \
--fastspeech2-checkpoint=fastspeech2_nosil_aishell3_ckpt_0.4/snapshot_iter_96400.pdz \
--fastspeech2-stat=fastspeech2_nosil_aishell3_ckpt_0.4/speech_stats.npy \
--pwg-config=parallel_wavegan_baker_ckpt_0.4/pwg_default.yaml \
--pwg-params=parallel_wavegan_baker_ckpt_0.4/pwg_generator.pdparams \
--pwg-stat=parallel_wavegan_baker_ckpt_0.4/pwg_stats.npy \
--text=../sentences.txt \
--output-dir=exp/debug/test_e2e \
--device="gpu" \
--phones-dict=fastspeech2_nosil_aishell3_ckpt_0.4/phone_id_map.txt \
--speaker-dict=fastspeech2_nosil_aishell3_ckpt_0.4/speaker_id_map.txt
Future work
A multi-speaker vocoder is needed.