162 lines
5.9 KiB
Python
162 lines
5.9 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import logging
|
|
|
|
from paddle import distributed as dist
|
|
from parakeet.models.fastspeech2 import FastSpeech2Loss
|
|
from parakeet.training.extensions.evaluator import StandardEvaluator
|
|
from parakeet.training.reporter import report
|
|
from parakeet.training.updaters.standard_updater import StandardUpdater
|
|
logging.basicConfig(
|
|
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
|
datefmt='[%Y-%m-%d %H:%M:%S]')
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
class FastSpeech2Updater(StandardUpdater):
|
|
def __init__(self,
|
|
model,
|
|
optimizer,
|
|
dataloader,
|
|
init_state=None,
|
|
use_masking=False,
|
|
use_weighted_masking=False,
|
|
output_dir=None):
|
|
super().__init__(model, optimizer, dataloader, init_state=None)
|
|
self.use_masking = use_masking
|
|
self.use_weighted_masking = use_weighted_masking
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
logger.addHandler(self.filehandler)
|
|
self.logger = logger
|
|
self.msg = ""
|
|
|
|
def update_core(self, batch):
|
|
self.msg = "Rank: {}, ".format(dist.get_rank())
|
|
losses_dict = {}
|
|
|
|
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens = self.model(
|
|
text=batch["text"],
|
|
text_lengths=batch["text_lengths"],
|
|
speech=batch["speech"],
|
|
speech_lengths=batch["speech_lengths"],
|
|
durations=batch["durations"],
|
|
pitch=batch["pitch"],
|
|
energy=batch["energy"],
|
|
spk_id=batch["spk_id"], )
|
|
|
|
criterion = FastSpeech2Loss(
|
|
use_masking=self.use_masking,
|
|
use_weighted_masking=self.use_weighted_masking)
|
|
|
|
l1_loss, duration_loss, pitch_loss, energy_loss = criterion(
|
|
after_outs=after_outs,
|
|
before_outs=before_outs,
|
|
d_outs=d_outs,
|
|
p_outs=p_outs,
|
|
e_outs=e_outs,
|
|
ys=ys,
|
|
ds=batch["durations"],
|
|
ps=batch["pitch"],
|
|
es=batch["energy"],
|
|
ilens=batch["text_lengths"],
|
|
olens=olens)
|
|
|
|
loss = l1_loss + duration_loss + pitch_loss + energy_loss
|
|
|
|
optimizer = self.optimizer
|
|
optimizer.clear_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
report("train/loss", float(loss))
|
|
report("train/l1_loss", float(l1_loss))
|
|
report("train/duration_loss", float(duration_loss))
|
|
report("train/pitch_loss", float(pitch_loss))
|
|
report("train/energy_loss", float(energy_loss))
|
|
|
|
losses_dict["l1_loss"] = float(l1_loss)
|
|
losses_dict["duration_loss"] = float(duration_loss)
|
|
losses_dict["pitch_loss"] = float(pitch_loss)
|
|
losses_dict["energy_loss"] = float(energy_loss)
|
|
losses_dict["loss"] = float(loss)
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_dict.items())
|
|
|
|
|
|
class FastSpeech2Evaluator(StandardEvaluator):
|
|
def __init__(self,
|
|
model,
|
|
dataloader,
|
|
use_masking=False,
|
|
use_weighted_masking=False,
|
|
output_dir=None):
|
|
super().__init__(model, dataloader)
|
|
self.use_masking = use_masking
|
|
self.use_weighted_masking = use_weighted_masking
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
logger.addHandler(self.filehandler)
|
|
self.logger = logger
|
|
self.msg = ""
|
|
|
|
def evaluate_core(self, batch):
|
|
self.msg = "Evaluate: "
|
|
losses_dict = {}
|
|
|
|
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens = self.model(
|
|
text=batch["text"],
|
|
text_lengths=batch["text_lengths"],
|
|
speech=batch["speech"],
|
|
speech_lengths=batch["speech_lengths"],
|
|
durations=batch["durations"],
|
|
pitch=batch["pitch"],
|
|
energy=batch["energy"],
|
|
spk_id=batch["spk_id"], )
|
|
|
|
criterion = FastSpeech2Loss(
|
|
use_masking=self.use_masking,
|
|
use_weighted_masking=self.use_weighted_masking)
|
|
l1_loss, duration_loss, pitch_loss, energy_loss = criterion(
|
|
after_outs=after_outs,
|
|
before_outs=before_outs,
|
|
d_outs=d_outs,
|
|
p_outs=p_outs,
|
|
e_outs=e_outs,
|
|
ys=ys,
|
|
ds=batch["durations"],
|
|
ps=batch["pitch"],
|
|
es=batch["energy"],
|
|
ilens=batch["text_lengths"],
|
|
olens=olens, )
|
|
loss = l1_loss + duration_loss + pitch_loss + energy_loss
|
|
|
|
report("eval/loss", float(loss))
|
|
report("eval/l1_loss", float(l1_loss))
|
|
report("eval/duration_loss", float(duration_loss))
|
|
report("eval/pitch_loss", float(pitch_loss))
|
|
report("eval/energy_loss", float(energy_loss))
|
|
|
|
losses_dict["l1_loss"] = float(l1_loss)
|
|
losses_dict["duration_loss"] = float(duration_loss)
|
|
losses_dict["pitch_loss"] = float(pitch_loss)
|
|
losses_dict["energy_loss"] = float(energy_loss)
|
|
losses_dict["loss"] = float(loss)
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_dict.items())
|
|
self.logger.info(self.msg)
|