190 lines
6.3 KiB
Python
190 lines
6.3 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Utility functions to create batch for arrays which satisfy some conditions.
|
|
Batch functions for text sequences, audio and spectrograms are provided.
|
|
"""
|
|
import numpy as np
|
|
|
|
__all__ = [
|
|
"batch_text_id",
|
|
"batch_wav",
|
|
"batch_spec",
|
|
"TextIDBatcher",
|
|
"WavBatcher",
|
|
"SpecBatcher",
|
|
]
|
|
|
|
|
|
class TextIDBatcher(object):
|
|
"""A wrapper class for `batch_text_id`."""
|
|
|
|
def __init__(self, pad_id=0, dtype=np.int64):
|
|
self.pad_id = pad_id
|
|
self.dtype = dtype
|
|
|
|
def __call__(self, minibatch):
|
|
out = batch_text_id(minibatch, pad_id=self.pad_id, dtype=self.dtype)
|
|
return out
|
|
|
|
|
|
def batch_text_id(minibatch, pad_id=0, dtype=np.int64):
|
|
"""Pad sequences to text_ids to the largest length and batch them.
|
|
|
|
Args:
|
|
minibatch (List[np.ndarray]): list of rank-1 arrays, shape(T,), dtype np.int64, text_ids.
|
|
pad_id (int, optional): the id which correspond to the special pad token. Defaults to 0.
|
|
dtype (np.dtype, optional): the data dtype of the output. Defaults to np.int64.
|
|
|
|
Returns:
|
|
np.ndarray: rank-2 array of text_ids, shape(B, T), B stands for batch_size, T stands for length. The output batch.
|
|
"""
|
|
peek_example = minibatch[0]
|
|
assert len(peek_example.shape) == 1, "text example is an 1D tensor"
|
|
|
|
lengths = [example.shape[0] for example in minibatch
|
|
] # assume (channel, n_samples) or (n_samples, )
|
|
max_len = np.max(lengths)
|
|
|
|
batch = []
|
|
for example in minibatch:
|
|
pad_len = max_len - example.shape[0]
|
|
batch.append(
|
|
np.pad(
|
|
example, [(0, pad_len)],
|
|
mode='constant',
|
|
constant_values=pad_id))
|
|
|
|
return np.array(batch, dtype=dtype), np.array(lengths, dtype=np.int64)
|
|
|
|
|
|
class WavBatcher(object):
|
|
"""A wrapper class for `batch_wav`."""
|
|
|
|
def __init__(self, pad_value=0., dtype=np.float32):
|
|
self.pad_value = pad_value
|
|
self.dtype = dtype
|
|
|
|
def __call__(self, minibatch):
|
|
out = batch_wav(minibatch, pad_value=self.pad_value, dtype=self.dtype)
|
|
return out
|
|
|
|
|
|
def batch_wav(minibatch, pad_value=0., dtype=np.float32):
|
|
"""pad audios to the largest length and batch them.
|
|
|
|
Args:
|
|
minibatch (List[np.ndarray]): list of rank-1 float arrays(mono-channel audio, shape(T,)), dtype float.
|
|
pad_value (float, optional): the pad value. Defaults to 0..
|
|
dtype (np.dtype, optional): the data type of the output. Defaults to np.float32.
|
|
|
|
Returns:
|
|
np.ndarray: shape(B, T), the output batch.
|
|
"""
|
|
|
|
peek_example = minibatch[0]
|
|
assert len(peek_example.shape) == 1, "we only handles mono-channel wav"
|
|
|
|
# assume (channel, n_samples) or (n_samples, )
|
|
lengths = [example.shape[-1] for example in minibatch]
|
|
max_len = np.max(lengths)
|
|
|
|
batch = []
|
|
for example in minibatch:
|
|
pad_len = max_len - example.shape[-1]
|
|
batch.append(
|
|
np.pad(
|
|
example, [(0, pad_len)],
|
|
mode='constant',
|
|
constant_values=pad_value))
|
|
return np.array(batch, dtype=dtype), np.array(lengths, dtype=np.int64)
|
|
|
|
|
|
class SpecBatcher(object):
|
|
"""A wrapper class for `batch_spec`"""
|
|
|
|
def __init__(self, pad_value=0., time_major=False, dtype=np.float32):
|
|
self.pad_value = pad_value
|
|
self.dtype = dtype
|
|
self.time_major = time_major
|
|
|
|
def __call__(self, minibatch):
|
|
out = batch_spec(
|
|
minibatch,
|
|
pad_value=self.pad_value,
|
|
time_major=self.time_major,
|
|
dtype=self.dtype)
|
|
return out
|
|
|
|
|
|
def batch_spec(minibatch, pad_value=0., time_major=False, dtype=np.float32):
|
|
"""Pad spectra to the largest length and batch them.
|
|
|
|
Args:
|
|
minibatch (List[np.ndarray]): list of rank-2 arrays of shape(F, T) for mono-channel spectrograms, or list of rank-3 arrays of shape(C, F, T) for multi-channel spectrograms(F stands for frequency bands.), dtype float.
|
|
pad_value (float, optional): the pad value. Defaults to 0..
|
|
dtype (np.dtype, optional): data type of the output. Defaults to np.float32.
|
|
|
|
Returns:
|
|
np.ndarray: a rank-3 array of shape(B, F, T) or (B, T, F).
|
|
"""
|
|
# assume (F, T) or (T, F)
|
|
peek_example = minibatch[0]
|
|
assert len(
|
|
peek_example.shape) == 2, "we only handles mono channel spectrogram"
|
|
|
|
# assume (F, n_frame) or (n_frame, F)
|
|
time_idx = 0 if time_major else -1
|
|
lengths = [example.shape[time_idx] for example in minibatch]
|
|
max_len = np.max(lengths)
|
|
|
|
batch = []
|
|
for example in minibatch:
|
|
pad_len = max_len - example.shape[time_idx]
|
|
if time_major:
|
|
batch.append(
|
|
np.pad(
|
|
example, [(0, pad_len), (0, 0)],
|
|
mode='constant',
|
|
constant_values=pad_value))
|
|
else:
|
|
batch.append(
|
|
np.pad(
|
|
example, [(0, 0), (0, pad_len)],
|
|
mode='constant',
|
|
constant_values=pad_value))
|
|
return np.array(batch, dtype=dtype), np.array(lengths, dtype=np.int64)
|
|
|
|
|
|
def batch_sequences(sequences, axis=0, pad_value=0):
|
|
# import pdb; pdb.set_trace()
|
|
seq = sequences[0]
|
|
ndim = seq.ndim
|
|
if axis < 0:
|
|
axis += ndim
|
|
dtype = seq.dtype
|
|
pad_value = dtype.type(pad_value)
|
|
seq_lengths = [seq.shape[axis] for seq in sequences]
|
|
max_length = np.max(seq_lengths)
|
|
|
|
padded_sequences = []
|
|
for seq, length in zip(sequences, seq_lengths):
|
|
padding = [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (
|
|
ndim - axis - 1)
|
|
padded_seq = np.pad(
|
|
seq, padding, mode='constant', constant_values=pad_value)
|
|
padded_sequences.append(padded_seq)
|
|
batch = np.stack(padded_sequences)
|
|
return batch
|