61 lines
2.1 KiB
Python
61 lines
2.1 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import division
|
|
import os
|
|
import soundfile as sf
|
|
from collections import OrderedDict
|
|
|
|
from paddle import fluid
|
|
import paddle.fluid.dygraph as dg
|
|
|
|
|
|
def make_output_tree(output_dir):
|
|
checkpoint_dir = os.path.join(output_dir, "checkpoints")
|
|
if not os.path.exists(checkpoint_dir):
|
|
os.makedirs(checkpoint_dir)
|
|
|
|
state_dir = os.path.join(output_dir, "states")
|
|
if not os.path.exists(state_dir):
|
|
os.makedirs(state_dir)
|
|
|
|
|
|
def eval_model(model, valid_loader, output_dir, iteration, sample_rate):
|
|
model.eval()
|
|
for i, batch in enumerate(valid_loader):
|
|
# print("sentence {}".format(i))
|
|
path = os.path.join(output_dir,
|
|
"sentence_{}_step_{}.wav".format(i, iteration))
|
|
audio_clips, mel_specs, audio_starts = batch
|
|
wav_var = model.synthesis(mel_specs)
|
|
wav_np = wav_var.numpy()[0]
|
|
sf.write(path, wav_np, samplerate=sample_rate)
|
|
print("generated {}".format(path))
|
|
|
|
|
|
def load_wavenet(model, path):
|
|
wavenet_dict, _ = dg.load_dygraph(path)
|
|
encoder_dict = OrderedDict()
|
|
teacher_dict = OrderedDict()
|
|
for k, v in wavenet_dict.items():
|
|
if k.startswith("encoder."):
|
|
encoder_dict[k.split('.', 1)[1]] = v
|
|
else:
|
|
# k starts with "decoder."
|
|
teacher_dict[k.split('.', 1)[1]] = v
|
|
|
|
model.encoder.set_dict(encoder_dict)
|
|
model.teacher.set_dict(teacher_dict)
|
|
print("loaded the encoder part and teacher part from wavenet model.")
|