ParakeetRebeccaRosario/examples/clarinet/utils.py

61 lines
2.1 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import os
import soundfile as sf
from collections import OrderedDict
from paddle import fluid
import paddle.fluid.dygraph as dg
def make_output_tree(output_dir):
checkpoint_dir = os.path.join(output_dir, "checkpoints")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
state_dir = os.path.join(output_dir, "states")
if not os.path.exists(state_dir):
os.makedirs(state_dir)
def eval_model(model, valid_loader, output_dir, iteration, sample_rate):
model.eval()
for i, batch in enumerate(valid_loader):
# print("sentence {}".format(i))
path = os.path.join(output_dir,
"sentence_{}_step_{}.wav".format(i, iteration))
audio_clips, mel_specs, audio_starts = batch
wav_var = model.synthesis(mel_specs)
wav_np = wav_var.numpy()[0]
sf.write(path, wav_np, samplerate=sample_rate)
print("generated {}".format(path))
def load_wavenet(model, path):
wavenet_dict, _ = dg.load_dygraph(path)
encoder_dict = OrderedDict()
teacher_dict = OrderedDict()
for k, v in wavenet_dict.items():
if k.startswith("encoder."):
encoder_dict[k.split('.', 1)[1]] = v
else:
# k starts with "decoder."
teacher_dict[k.split('.', 1)[1]] = v
model.encoder.set_dict(encoder_dict)
model.teacher.set_dict(teacher_dict)
print("loaded the encoder part and teacher part from wavenet model.")