ParakeetRebeccaRosario/examples/deepvoice3/train.py

187 lines
7.7 KiB
Python

import numpy as np
from matplotlib import cm
import librosa
import os
import time
import tqdm
import paddle
from paddle import fluid
from paddle.fluid import layers as F
from paddle.fluid import initializer as I
from paddle.fluid import dygraph as dg
from paddle.fluid.io import DataLoader
from visualdl import LogWriter
from parakeet.models.deepvoice3 import Encoder, Decoder, PostNet, SpectraNet
from parakeet.data import SliceDataset, DataCargo, SequentialSampler, RandomSampler
from parakeet.utils.io import save_parameters, load_parameters
from parakeet.g2p import en
from data import LJSpeech, DataCollector
from vocoder import WaveflowVocoder, GriffinLimVocoder
from clip import DoubleClip
def create_model(config):
char_embedding = dg.Embedding((en.n_vocab, config["char_dim"]), param_attr=I.Normal(scale=0.1))
multi_speaker = config["n_speakers"] > 1
speaker_embedding = dg.Embedding((config["n_speakers"], config["speaker_dim"]), param_attr=I.Normal(scale=0.1)) \
if multi_speaker else None
encoder = Encoder(config["encoder_layers"], config["char_dim"],
config["encoder_dim"], config["kernel_size"],
has_bias=multi_speaker, bias_dim=config["speaker_dim"],
keep_prob=1.0 - config["dropout"])
decoder = Decoder(config["n_mels"], config["reduction_factor"],
list(config["prenet_sizes"]) + [config["char_dim"]],
config["decoder_layers"], config["kernel_size"],
config["attention_dim"],
position_encoding_weight=config["position_weight"],
omega=config["position_rate"],
has_bias=multi_speaker, bias_dim=config["speaker_dim"],
keep_prob=1.0 - config["dropout"])
postnet = PostNet(config["postnet_layers"], config["char_dim"],
config["postnet_dim"], config["kernel_size"],
config["n_mels"], config["reduction_factor"],
has_bias=multi_speaker, bias_dim=config["speaker_dim"],
keep_prob=1.0 - config["dropout"])
spectranet = SpectraNet(char_embedding, speaker_embedding, encoder, decoder, postnet)
return spectranet
def create_data(config, data_path):
dataset = LJSpeech(data_path)
train_dataset = SliceDataset(dataset, config["valid_size"], len(dataset))
train_collator = DataCollector(config["p_pronunciation"])
train_sampler = RandomSampler(train_dataset)
train_cargo = DataCargo(train_dataset, train_collator,
batch_size=config["batch_size"], sampler=train_sampler)
train_loader = DataLoader\
.from_generator(capacity=10, return_list=True)\
.set_batch_generator(train_cargo)
valid_dataset = SliceDataset(dataset, 0, config["valid_size"])
valid_collector = DataCollector(1.)
valid_sampler = SequentialSampler(valid_dataset)
valid_cargo = DataCargo(valid_dataset, valid_collector,
batch_size=1, sampler=valid_sampler)
valid_loader = DataLoader\
.from_generator(capacity=2, return_list=True)\
.set_batch_generator(valid_cargo)
return train_loader, valid_loader
def create_optimizer(model, config):
optim = fluid.optimizer.Adam(config["learning_rate"],
parameter_list=model.parameters(),
grad_clip=DoubleClip(config["clip_value"], config["clip_norm"]))
return optim
def train(args, config):
model = create_model(config)
train_loader, valid_loader = create_data(config, args.input)
optim = create_optimizer(model, config)
global global_step
max_iteration = config["max_iteration"]
iterator = iter(tqdm.tqdm(train_loader))
while global_step <= max_iteration:
# get inputs
try:
batch = next(iterator)
except StopIteration:
iterator = iter(tqdm.tqdm(train_loader))
batch = next(iterator)
# unzip it
text_seqs, text_lengths, specs, mels, num_frames = batch
# forward & backward
model.train()
outputs = model(text_seqs, text_lengths, speakers=None, mel=mels)
decoded, refined, attentions, final_state = outputs
causal_mel_loss = model.spec_loss(decoded, mels, num_frames)
non_causal_mel_loss = model.spec_loss(refined, mels, num_frames)
loss = causal_mel_loss + non_causal_mel_loss
loss.backward()
# update
optim.minimize(loss)
# logging
tqdm.tqdm.write("[train] step: {}\tloss: {:.6f}\tcausal:{:.6f}\tnon_causal:{:.6f}".format(
global_step,
loss.numpy()[0],
causal_mel_loss.numpy()[0],
non_causal_mel_loss.numpy()[0]))
writer.add_scalar("loss/causal_mel_loss", causal_mel_loss.numpy()[0], step=global_step)
writer.add_scalar("loss/non_causal_mel_loss", non_causal_mel_loss.numpy()[0], step=global_step)
writer.add_scalar("loss/loss", loss.numpy()[0], step=global_step)
if global_step % config["report_interval"] == 0:
text_length = int(text_lengths.numpy()[0])
num_frame = int(num_frames.numpy()[0])
tag = "train_mel/ground-truth"
img = cm.viridis(normalize(mels.numpy()[0, :num_frame].T))
writer.add_image(tag, img, step=global_step)
tag = "train_mel/decoded"
img = cm.viridis(normalize(decoded.numpy()[0, :num_frame].T))
writer.add_image(tag, img, step=global_step)
tag = "train_mel/refined"
img = cm.viridis(normalize(refined.numpy()[0, :num_frame].T))
writer.add_image(tag, img, step=global_step)
vocoder = WaveflowVocoder()
vocoder.model.eval()
tag = "train_audio/ground-truth-waveflow"
wav = vocoder(F.transpose(mels[0:1, :num_frame, :], (0, 2, 1)))
writer.add_audio(tag, wav.numpy()[0], step=global_step, sample_rate=22050)
tag = "train_audio/decoded-waveflow"
wav = vocoder(F.transpose(decoded[0:1, :num_frame, :], (0, 2, 1)))
writer.add_audio(tag, wav.numpy()[0], step=global_step, sample_rate=22050)
tag = "train_audio/refined-waveflow"
wav = vocoder(F.transpose(refined[0:1, :num_frame, :], (0, 2, 1)))
writer.add_audio(tag, wav.numpy()[0], step=global_step, sample_rate=22050)
attentions_np = attentions.numpy()
attentions_np = attentions_np[:, 0, :num_frame // 4 , :text_length]
for i, attention_layer in enumerate(np.rot90(attentions_np, axes=(1,2))):
tag = "train_attention/layer_{}".format(i)
img = cm.viridis(normalize(attention_layer))
writer.add_image(tag, img, step=global_step, dataformats="HWC")
if global_step % config["save_interval"] == 0:
save_parameters(writer.logdir, global_step, model, optim)
# global step +1
global_step += 1
def normalize(arr):
return (arr - arr.min()) / (arr.max() - arr.min())
if __name__ == "__main__":
import argparse
from ruamel import yaml
parser = argparse.ArgumentParser(description="train a Deep Voice 3 model with LJSpeech")
parser.add_argument("--config", type=str, required=True, help="config file")
parser.add_argument("--input", type=str, required=True, help="data path of the original data")
args = parser.parse_args()
with open(args.config, 'rt') as f:
config = yaml.safe_load(f)
dg.enable_dygraph(fluid.CUDAPlace(0))
global global_step
global_step = 1
global writer
writer = LogWriter()
print("[Training] tensorboard log and checkpoints are save in {}".format(
writer.logdir))
train(args, config)