ParakeetRebeccaRosario/examples/waveflow/train.py

160 lines
5.3 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import numpy as np
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader, DistributedBatchSampler
from parakeet.data import dataset
from parakeet.models.waveflow import ConditionalWaveFlow, WaveFlowLoss
from parakeet.utils import mp_tools
from parakeet.training.cli import default_argument_parser
from parakeet.training.experiment import ExperimentBase
from config import get_cfg_defaults
from ljspeech import LJSpeech, LJSpeechClipCollector, LJSpeechCollector
class Experiment(ExperimentBase):
def setup_model(self):
config = self.config
model = ConditionalWaveFlow(
upsample_factors=config.model.upsample_factors,
n_flows=config.model.n_flows,
n_layers=config.model.n_layers,
n_group=config.model.n_group,
channels=config.model.channels,
n_mels=config.data.n_mels,
kernel_size=config.model.kernel_size)
if self.parallel:
model = paddle.DataParallel(model)
optimizer = paddle.optimizer.Adam(
config.training.lr, parameters=model.parameters())
criterion = WaveFlowLoss(sigma=config.model.sigma)
self.model = model
self.optimizer = optimizer
self.criterion = criterion
def setup_dataloader(self):
config = self.config
args = self.args
ljspeech_dataset = LJSpeech(args.data)
valid_set, train_set = dataset.split(ljspeech_dataset,
config.data.valid_size)
batch_fn = LJSpeechClipCollector(config.data.clip_frames,
config.data.hop_length)
if not self.parallel:
train_loader = DataLoader(
train_set,
batch_size=config.data.batch_size,
shuffle=True,
drop_last=True,
collate_fn=batch_fn)
else:
sampler = DistributedBatchSampler(
train_set,
batch_size=config.data.batch_size,
num_replicas=dist.get_world_size(),
rank=dist.get_rank(),
shuffle=True,
drop_last=True)
train_loader = DataLoader(
train_set, batch_sampler=sampler, collate_fn=batch_fn)
valid_batch_fn = LJSpeechCollector()
valid_loader = DataLoader(
valid_set, batch_size=1, collate_fn=valid_batch_fn)
self.train_loader = train_loader
self.valid_loader = valid_loader
def compute_outputs(self, mel, wav):
# model_core = model._layers if isinstance(model, paddle.DataParallel) else model
z, log_det_jocobian = self.model(wav, mel)
return z, log_det_jocobian
def train_batch(self):
start = time.time()
batch = self.read_batch()
data_loader_time = time.time() - start
self.model.train()
self.optimizer.clear_grad()
mel, wav = batch
z, log_det_jocobian = self.compute_outputs(mel, wav)
loss = self.criterion(z, log_det_jocobian)
loss.backward()
self.optimizer.step()
iteration_time = time.time() - start
loss_value = float(loss)
msg = "Rank: {}, ".format(dist.get_rank())
msg += "step: {}, ".format(self.iteration)
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time,
iteration_time)
msg += "loss: {:>.6f}".format(loss_value)
self.logger.info(msg)
if dist.get_rank() == 0:
self.visualizer.add_scalar("train/loss", loss_value,
self.iteration)
@mp_tools.rank_zero_only
@paddle.no_grad()
def valid(self):
valid_iterator = iter(self.valid_loader)
valid_losses = []
mel, wav = next(valid_iterator)
z, log_det_jocobian = self.compute_outputs(mel, wav)
loss = self.criterion(z, log_det_jocobian)
valid_losses.append(float(loss))
valid_loss = np.mean(valid_losses)
self.visualizer.add_scalar("valid/loss", valid_loss, self.iteration)
def main_sp(config, args):
exp = Experiment(config, args)
exp.setup()
exp.resume_or_load()
exp.run()
def main(config, args):
if args.nprocs > 1 and args.device == "gpu":
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
else:
main_sp(config, args)
if __name__ == "__main__":
config = get_cfg_defaults()
parser = default_argument_parser()
args = parser.parse_args()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
print(args)
main(config, args)