66 lines
1.8 KiB
Python
66 lines
1.8 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import math
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.jit import to_static, save
|
|
from paddle.static import InputSpec
|
|
|
|
|
|
def test_applicative_evaluation():
|
|
def m_sqrt2(x):
|
|
return paddle.scale(x, math.sqrt(2))
|
|
|
|
subgraph = to_static(m_sqrt2, input_spec=[InputSpec([-1])])
|
|
paddle.jit.save(subgraph, './temp_test_to_static')
|
|
|
|
fn = paddle.jit.load('./temp_test_to_static')
|
|
x = paddle.arange(10, dtype=paddle.float32)
|
|
y = fn(x)
|
|
|
|
print(x)
|
|
print(y)
|
|
|
|
|
|
def test_nested_sequential():
|
|
class Net(nn.Layer):
|
|
def __init__(self):
|
|
super().__init__()
|
|
group1 = nn.Sequential(
|
|
nn.Linear(2, 3),
|
|
nn.Sigmoid(), )
|
|
group2 = nn.Sequential(
|
|
nn.Sequential(nn.Linear(3, 3)),
|
|
nn.Linear(3, 4),
|
|
nn.ReLU(), )
|
|
self.layers = nn.Sequential(group1, group2)
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
net = Net()
|
|
x = paddle.randn([4, 2])
|
|
y = net(x)
|
|
print(y)
|
|
|
|
subgraph = to_static(net, input_spec=[InputSpec([-1, 2])])
|
|
paddle.jit.save(subgraph, './temp_test_to_static')
|
|
|
|
fn = paddle.jit.load('./temp_test_to_static')
|
|
y = fn(x)
|
|
|
|
print(y)
|