280 lines
8.5 KiB
Python
280 lines
8.5 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import List, Dict, Any
|
|
import soundfile as sf
|
|
import librosa
|
|
import numpy as np
|
|
import argparse
|
|
import yaml
|
|
import json
|
|
import concurrent.futures
|
|
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
|
from pathlib import Path
|
|
import tqdm
|
|
from operator import itemgetter
|
|
from praatio import tgio
|
|
import logging
|
|
|
|
from config import get_cfg_default
|
|
|
|
|
|
def logmelfilterbank(audio,
|
|
sr,
|
|
n_fft=1024,
|
|
hop_length=256,
|
|
win_length=None,
|
|
window="hann",
|
|
n_mels=80,
|
|
fmin=None,
|
|
fmax=None,
|
|
eps=1e-10):
|
|
"""Compute log-Mel filterbank feature.
|
|
|
|
Parameters
|
|
----------
|
|
audio : ndarray
|
|
Audio signal (T,).
|
|
sr : int
|
|
Sampling rate.
|
|
n_fft : int
|
|
FFT size. (Default value = 1024)
|
|
hop_length : int
|
|
Hop size. (Default value = 256)
|
|
win_length : int
|
|
Window length. If set to None, it will be the same as fft_size. (Default value = None)
|
|
window : str
|
|
Window function type. (Default value = "hann")
|
|
n_mels : int
|
|
Number of mel basis. (Default value = 80)
|
|
fmin : int
|
|
Minimum frequency in mel basis calculation. (Default value = None)
|
|
fmax : int
|
|
Maximum frequency in mel basis calculation. (Default value = None)
|
|
eps : float
|
|
Epsilon value to avoid inf in log calculation. (Default value = 1e-10)
|
|
|
|
Returns
|
|
-------
|
|
np.ndarray
|
|
Log Mel filterbank feature (#frames, num_mels).
|
|
|
|
"""
|
|
# get amplitude spectrogram
|
|
x_stft = librosa.stft(
|
|
audio,
|
|
n_fft=n_fft,
|
|
hop_length=hop_length,
|
|
win_length=win_length,
|
|
window=window,
|
|
pad_mode="reflect")
|
|
spc = np.abs(x_stft) # (#bins, #frames,)
|
|
|
|
# get mel basis
|
|
fmin = 0 if fmin is None else fmin
|
|
fmax = sr / 2 if fmax is None else fmax
|
|
mel_basis = librosa.filters.mel(sr, n_fft, n_mels, fmin, fmax)
|
|
|
|
return np.log10(np.maximum(eps, np.dot(mel_basis, spc)))
|
|
|
|
|
|
def process_sentence(config: Dict[str, Any],
|
|
fp: Path,
|
|
alignment_fp: Path,
|
|
output_dir: Path):
|
|
utt_id = fp.stem
|
|
|
|
# reading
|
|
y, sr = librosa.load(fp, sr=config.sr) # resampling may occur
|
|
assert len(y.shape) == 1, f"{utt_id} is not a mono-channel audio."
|
|
assert np.abs(y).max(
|
|
) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM."
|
|
duration = librosa.get_duration(y, sr=sr)
|
|
|
|
# trim according to the alignment file
|
|
alignment = tgio.openTextgrid(alignment_fp)
|
|
intervals = alignment.tierDict[alignment.tierNameList[0]].entryList
|
|
first, last = intervals[0], intervals[-1]
|
|
start = 0
|
|
end = last.end
|
|
if first.label == "sil" and first.end < duration:
|
|
start = first.end
|
|
else:
|
|
logging.warning(
|
|
f" There is something wrong with the fisrt interval {first} in utterance: {utt_id}"
|
|
)
|
|
if last.label == "sil" and last.start < duration:
|
|
end = last.start
|
|
else:
|
|
end = duration
|
|
logging.warning(
|
|
f" There is something wrong with the last interval {last} in utterance: {utt_id}"
|
|
)
|
|
# silence trimmed
|
|
start, end = librosa.time_to_samples([first.end, last.start], sr=sr)
|
|
y = y[start:end]
|
|
|
|
# energy based silence trimming
|
|
if config.trim_silence:
|
|
y, _ = librosa.effects.trim(
|
|
y,
|
|
top_db=config.top_db,
|
|
frame_length=config.trim_frame_length,
|
|
hop_length=config.trim_hop_length)
|
|
|
|
logmel = logmelfilterbank(
|
|
y,
|
|
sr=sr,
|
|
n_fft=config.n_fft,
|
|
window=config.window,
|
|
win_length=config.win_length,
|
|
hop_length=config.hop_length,
|
|
n_mels=config.n_mels,
|
|
fmin=config.fmin,
|
|
fmax=config.fmax)
|
|
|
|
# adjust time to make num_samples == num_frames * hop_length
|
|
num_frames = logmel.shape[1]
|
|
y = np.pad(y, (0, config.n_fft), mode="reflect")
|
|
y = y[:num_frames * config.hop_length]
|
|
num_sample = y.shape[0]
|
|
|
|
mel_path = output_dir / (utt_id + "_feats.npy")
|
|
wav_path = output_dir / (utt_id + "_wave.npy")
|
|
np.save(wav_path, y)
|
|
np.save(mel_path, logmel)
|
|
record = {
|
|
"utt_id": utt_id,
|
|
"num_samples": num_sample,
|
|
"num_frames": num_frames,
|
|
"feats_path": str(mel_path.resolve()),
|
|
"wave_path": str(wav_path.resolve()),
|
|
}
|
|
return record
|
|
|
|
|
|
def process_sentences(config,
|
|
fps: List[Path],
|
|
alignment_fps: List[Path],
|
|
output_dir: Path,
|
|
nprocs: int=1):
|
|
if nprocs == 1:
|
|
results = []
|
|
for fp, alignment_fp in tqdm.tqdm(zip(fps, alignment_fps)):
|
|
results.append(
|
|
process_sentence(config, fp, alignment_fp, output_dir))
|
|
else:
|
|
with ProcessPoolExecutor(nprocs) as pool:
|
|
futures = []
|
|
with tqdm.tqdm(total=len(fps)) as progress:
|
|
for fp, alignment_fp in zip(fps, alignment_fps):
|
|
future = pool.submit(process_sentence, config, fp,
|
|
alignment_fp, output_dir)
|
|
future.add_done_callback(lambda p: progress.update())
|
|
futures.append(future)
|
|
|
|
results = []
|
|
for ft in futures:
|
|
results.append(ft.result())
|
|
|
|
results.sort(key=itemgetter("utt_id"))
|
|
with open(output_dir / "metadata.json", 'wt') as f:
|
|
json.dump(results, f)
|
|
print("Done")
|
|
|
|
|
|
def main():
|
|
# parse config and args
|
|
parser = argparse.ArgumentParser(
|
|
description="Preprocess audio and then extract features (See detail in parallel_wavegan/bin/preprocess.py)."
|
|
)
|
|
parser.add_argument(
|
|
"--rootdir",
|
|
default=None,
|
|
type=str,
|
|
help="directory including wav files. you need to specify either scp or rootdir."
|
|
)
|
|
parser.add_argument(
|
|
"--dumpdir",
|
|
type=str,
|
|
required=True,
|
|
help="directory to dump feature files.")
|
|
parser.add_argument(
|
|
"--config", type=str, help="yaml format configuration file.")
|
|
parser.add_argument(
|
|
"--verbose",
|
|
type=int,
|
|
default=1,
|
|
help="logging level. higher is more logging. (default=1)")
|
|
parser.add_argument(
|
|
"--num_cpu", type=int, default=1, help="number of process.")
|
|
args = parser.parse_args()
|
|
|
|
C = get_cfg_default()
|
|
if args.config:
|
|
C.merge_from_file(args.config)
|
|
C.freeze()
|
|
|
|
if args.verbose > 1:
|
|
print(vars(args))
|
|
print(C)
|
|
|
|
root_dir = Path(args.rootdir)
|
|
dumpdir = Path(args.dumpdir)
|
|
dumpdir.mkdir(parents=True, exist_ok=True)
|
|
|
|
wav_files = sorted(list((root_dir / "Wave").rglob("*.wav")))
|
|
alignment_files = sorted(
|
|
list((root_dir / "PhoneLabeling").rglob("*.interval")))
|
|
|
|
# split data into 3 sections
|
|
train_wav_files = wav_files[:9800]
|
|
dev_wav_files = wav_files[9800:9900]
|
|
test_wav_files = wav_files[9900:]
|
|
|
|
train_alignment_files = alignment_files[:9800]
|
|
dev_alignment_files = alignment_files[9800:9900]
|
|
test_alignment_files = alignment_files[9900:]
|
|
|
|
train_dump_dir = dumpdir / "train"
|
|
train_dump_dir.mkdir(parents=True, exist_ok=True)
|
|
dev_dump_dir = dumpdir / "dev"
|
|
dev_dump_dir.mkdir(parents=True, exist_ok=True)
|
|
test_dump_dir = dumpdir / "test"
|
|
test_dump_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
# process for the 3 sections
|
|
process_sentences(
|
|
C,
|
|
train_wav_files,
|
|
train_alignment_files,
|
|
train_dump_dir,
|
|
nprocs=args.num_cpu)
|
|
process_sentences(
|
|
C,
|
|
dev_wav_files,
|
|
dev_alignment_files,
|
|
dev_dump_dir,
|
|
nprocs=args.num_cpu)
|
|
process_sentences(
|
|
C,
|
|
test_wav_files,
|
|
test_alignment_files,
|
|
test_dump_dir,
|
|
nprocs=args.num_cpu)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|