ParakeetRebeccaRosario/tests/test_waveflow.py

131 lines
4.4 KiB
Python

import numpy as np
import unittest
import paddle
paddle.set_default_dtype("float64")
paddle.disable_static(paddle.CPUPlace())
from parakeet.models import waveflow
class TestFold(unittest.TestCase):
def test_audio(self):
x = paddle.randn([4, 32 * 8])
y = waveflow.fold(x, 8)
self.assertTupleEqual(y.numpy().shape, (4, 32, 8))
def test_spec(self):
x = paddle.randn([4, 80, 32 * 8])
y = waveflow.fold(x, 8)
self.assertTupleEqual(y.numpy().shape, (4, 80, 32, 8))
class TestUpsampleNet(unittest.TestCase):
def test_io(self):
net = waveflow.UpsampleNet([2, 2])
x = paddle.randn([4, 8, 6])
y = net(x)
self.assertTupleEqual(y.numpy().shape, (4, 8, 2 * 2 * 6))
class TestResidualBlock(unittest.TestCase):
def test_io(self):
net = waveflow.ResidualBlock(4, 6, (3, 3), (2, 2))
x = paddle.randn([4, 4, 16, 32])
condition = paddle.randn([4, 6, 16, 32])
res, skip = net(x, condition)
self.assertTupleEqual(res.numpy().shape, (4, 4, 16, 32))
self.assertTupleEqual(skip.numpy().shape, (4, 4, 16, 32))
def test_add_input(self):
net = waveflow.ResidualBlock(4, 6, (3, 3), (2, 2))
net.eval()
net.start_sequence()
x_row = paddle.randn([4, 4, 1, 32])
condition_row = paddle.randn([4, 6, 1, 32])
res, skip = net.add_input(x_row, condition_row)
self.assertTupleEqual(res.numpy().shape, (4, 4, 1, 32))
self.assertTupleEqual(skip.numpy().shape, (4, 4, 1, 32))
class TestResidualNet(unittest.TestCase):
def test_io(self):
net = waveflow.ResidualNet(8, 6, 8, (3, 3), [1, 1, 1, 1, 1, 1, 1, 1])
x = paddle.randn([4, 6, 8, 32])
condition = paddle.randn([4, 8, 8, 32])
y = net(x, condition)
self.assertTupleEqual(y.numpy().shape, (4, 6, 8, 32))
def test_add_input(self):
net = waveflow.ResidualNet(8, 6, 8, (3, 3), [1, 1, 1, 1, 1, 1, 1, 1])
net.eval()
net.start_sequence()
x_row = paddle.randn([4, 6, 1, 32])
condition_row = paddle.randn([4, 8, 1, 32])
y_row = net.add_input(x_row, condition_row)
self.assertTupleEqual(y_row.numpy().shape, (4, 6, 1, 32))
class TestFlow(unittest.TestCase):
def test_io(self):
net = waveflow.Flow(8, 16, 7, (3, 3), 8)
x = paddle.randn([4, 1, 8, 32])
condition = paddle.randn([4, 7, 8, 32])
z, (logs, b) = net(x, condition)
self.assertTupleEqual(z.numpy().shape, (4, 1, 8, 32))
self.assertTupleEqual(logs.numpy().shape, (4, 1, 7, 32))
self.assertTupleEqual(b.numpy().shape, (4, 1, 7, 32))
def test_inverse_row(self):
net = waveflow.Flow(8, 16, 7, (3, 3), 8)
net.eval()
net._start_sequence()
x_row = paddle.randn([4, 1, 1, 32]) # last row
condition_row = paddle.randn([4, 7, 1, 32])
z_row = paddle.randn([4, 1, 1, 32])
x_next_row, (logs, b) = net._inverse_row(z_row, x_row, condition_row)
self.assertTupleEqual(x_next_row.numpy().shape, (4, 1, 1, 32))
self.assertTupleEqual(logs.numpy().shape, (4, 1, 1, 32))
self.assertTupleEqual(b.numpy().shape, (4, 1, 1, 32))
def test_inverse(self):
net = waveflow.Flow(8, 16, 7, (3, 3), 8)
net.eval()
z = paddle.randn([4, 1, 8, 32])
condition = paddle.randn([4, 7, 8, 32])
with paddle.no_grad():
x, (logs, b) = net.inverse(z, condition)
self.assertTupleEqual(x.numpy().shape, (4, 1, 8, 32))
self.assertTupleEqual(logs.numpy().shape, (4, 1, 7, 32))
self.assertTupleEqual(b.numpy().shape, (4, 1, 7, 32))
class TestWaveFlow(unittest.TestCase):
def test_io(self):
x = paddle.randn([4, 32 * 8 ])
condition = paddle.randn([4, 7, 32 * 8])
net = waveflow.WaveFlow(2, 8, 8, 16, 7, (3, 3))
z, logs_det_jacobian = net(x, condition)
self.assertTupleEqual(z.numpy().shape, (4, 32 * 8))
self.assertTupleEqual(logs_det_jacobian.numpy().shape, (1,))
def test_inverse(self):
z = paddle.randn([4, 32 * 8 ])
condition = paddle.randn([4, 7, 32 * 8])
net = waveflow.WaveFlow(2, 8, 8, 16, 7, (3, 3))
net.eval()
with paddle.no_grad():
x = net.inverse(z, condition)
self.assertTupleEqual(x.numpy().shape, (4, 32 * 8))