ParakeetRebeccaRosario/examples/deepvoice3/data.py

204 lines
7.4 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import os
import csv
from pathlib import Path
import numpy as np
import pandas as pd
import librosa
from scipy import signal, io
import six
from parakeet.data import DatasetMixin, TransformDataset, FilterDataset
from parakeet.g2p.en import text_to_sequence, sequence_to_text
class LJSpeechMetaData(DatasetMixin):
def __init__(self, root):
self.root = Path(root)
self._wav_dir = self.root.joinpath("wavs")
csv_path = self.root.joinpath("metadata.csv")
self._table = pd.read_csv(
csv_path,
sep="|",
encoding="utf-8",
header=None,
quoting=csv.QUOTE_NONE,
names=["fname", "raw_text", "normalized_text"])
def get_example(self, i):
fname, raw_text, normalized_text = self._table.iloc[i]
fname = str(self._wav_dir.joinpath(fname + ".wav"))
return fname, raw_text, normalized_text
def __len__(self):
return len(self._table)
class Transform(object):
def __init__(self,
replace_pronounciation_prob=0.,
sample_rate=22050,
preemphasis=.97,
n_fft=1024,
win_length=1024,
hop_length=256,
fmin=125,
fmax=7600,
n_mels=80,
min_level_db=-100,
ref_level_db=20,
max_norm=0.999,
clip_norm=True):
self.replace_pronounciation_prob = replace_pronounciation_prob
self.sample_rate = sample_rate
self.preemphasis = preemphasis
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.fmin = fmin
self.fmax = fmax
self.n_mels = n_mels
self.min_level_db = min_level_db
self.ref_level_db = ref_level_db
self.max_norm = max_norm
self.clip_norm = clip_norm
def __call__(self, in_data):
fname, _, normalized_text = in_data
# text processing
mix_grapheme_phonemes = text_to_sequence(
normalized_text, self.replace_pronounciation_prob)
text_length = len(mix_grapheme_phonemes)
# CAUTION: positions start from 1
speaker_id = None
# wave processing
wav, _ = librosa.load(fname, sr=self.sample_rate)
# preemphasis
y = signal.lfilter([1., -self.preemphasis], [1.], wav)
# STFT
D = librosa.stft(
y=y,
n_fft=self.n_fft,
win_length=self.win_length,
hop_length=self.hop_length)
S = np.abs(D)
# to db and normalize to 0-1
amplitude_min = np.exp(self.min_level_db / 20 * np.log(10)) # 1e-5
S_norm = 20 * np.log10(np.maximum(amplitude_min,
S)) - self.ref_level_db
S_norm = (S_norm - self.min_level_db) / (-self.min_level_db)
S_norm = self.max_norm * S_norm
if self.clip_norm:
S_norm = np.clip(S_norm, 0, self.max_norm)
# mel scale and to db and normalize to 0-1,
# CAUTION: pass linear scale S, not dbscaled S
S_mel = librosa.feature.melspectrogram(
S=S, n_mels=self.n_mels, fmin=self.fmin, fmax=self.fmax, power=1.)
S_mel = 20 * np.log10(np.maximum(amplitude_min,
S_mel)) - self.ref_level_db
S_mel_norm = (S_mel - self.min_level_db) / (-self.min_level_db)
S_mel_norm = self.max_norm * S_mel_norm
if self.clip_norm:
S_mel_norm = np.clip(S_mel_norm, 0, self.max_norm)
# num_frames
n_frames = S_mel_norm.shape[-1] # CAUTION: original number of frames
return (mix_grapheme_phonemes, text_length, speaker_id, S_norm,
S_mel_norm, n_frames)
class DataCollector(object):
def __init__(self, downsample_factor=4, r=1):
self.downsample_factor = int(downsample_factor)
self.frames_per_step = int(r)
self._factor = int(downsample_factor * r)
# CAUTION: small diff here
self._pad_begin = int(downsample_factor * r)
def __call__(self, examples):
batch_size = len(examples)
# lengths
text_lengths = np.array([example[1]
for example in examples]).astype(np.int64)
frames = np.array([example[5]
for example in examples]).astype(np.int64)
max_text_length = int(np.max(text_lengths))
max_frames = int(np.max(frames))
if max_frames % self._factor != 0:
max_frames += (self._factor - max_frames % self._factor)
max_frames += self._pad_begin
max_decoder_length = max_frames // self._factor
# pad time sequence
text_sequences = []
lin_specs = []
mel_specs = []
done_flags = []
for example in examples:
(mix_grapheme_phonemes, text_length, speaker_id, S_norm,
S_mel_norm, num_frames) = example
text_sequences.append(
np.pad(mix_grapheme_phonemes, (0, max_text_length - text_length
),
mode="constant"))
lin_specs.append(
np.pad(S_norm, ((0, 0), (self._pad_begin, max_frames -
self._pad_begin - num_frames)),
mode="constant"))
mel_specs.append(
np.pad(S_mel_norm, ((0, 0), (self._pad_begin, max_frames -
self._pad_begin - num_frames)),
mode="constant"))
done_flags.append(
np.pad(np.zeros((int(np.ceil(num_frames // self._factor)), )),
(0, max_decoder_length - int(
np.ceil(num_frames // self._factor))),
mode="constant",
constant_values=1))
text_sequences = np.array(text_sequences).astype(np.int64)
lin_specs = np.transpose(np.array(lin_specs),
(0, 2, 1)).astype(np.float32)
mel_specs = np.transpose(np.array(mel_specs),
(0, 2, 1)).astype(np.float32)
done_flags = np.array(done_flags).astype(np.float32)
# text positions
text_mask = (np.arange(1, 1 + max_text_length) <= np.expand_dims(
text_lengths, -1)).astype(np.int64)
text_positions = np.arange(
1, 1 + max_text_length, dtype=np.int64) * text_mask
# decoder_positions
decoder_positions = np.tile(
np.expand_dims(
np.arange(
1, 1 + max_decoder_length, dtype=np.int64), 0),
(batch_size, 1))
return (text_sequences, text_lengths, text_positions, mel_specs,
lin_specs, frames, decoder_positions, done_flags)