ParakeetRebeccaRosario/examples/wavenet/synthesis.py

153 lines
5.8 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import os
import ruamel.yaml
import argparse
from tqdm import tqdm
from tensorboardX import SummaryWriter
from paddle import fluid
import paddle.fluid.dygraph as dg
from parakeet.modules.weight_norm import WeightNormWrapper
from parakeet.data import SliceDataset, TransformDataset, DataCargo, SequentialSampler, RandomSampler
from parakeet.models.wavenet import UpsampleNet, WaveNet, ConditionalWavenet
from parakeet.utils.layer_tools import summary
from parakeet.utils import io
from data import LJSpeechMetaData, Transform, DataCollector
from utils import make_output_tree, valid_model, eval_model
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Synthesize valid data from LJspeech with a wavenet model.")
parser.add_argument(
"--data", type=str, help="path of the LJspeech dataset")
parser.add_argument("--config", type=str, help="path of the config file")
parser.add_argument("--device", type=int, default=-1, help="device to use")
g = parser.add_mutually_exclusive_group()
g.add_argument("--checkpoint", type=str, help="checkpoint to resume from")
g.add_argument(
"--iteration",
type=int,
help="the iteration of the checkpoint to load from output directory")
parser.add_argument(
"output",
type=str,
default="experiment",
help="path to save the synthesized audio")
args = parser.parse_args()
with open(args.config, 'rt') as f:
config = ruamel.yaml.safe_load(f)
ljspeech_meta = LJSpeechMetaData(args.data)
data_config = config["data"]
sample_rate = data_config["sample_rate"]
n_fft = data_config["n_fft"]
win_length = data_config["win_length"]
hop_length = data_config["hop_length"]
n_mels = data_config["n_mels"]
train_clip_seconds = data_config["train_clip_seconds"]
transform = Transform(sample_rate, n_fft, win_length, hop_length, n_mels)
ljspeech = TransformDataset(ljspeech_meta, transform)
valid_size = data_config["valid_size"]
ljspeech_valid = SliceDataset(ljspeech, 0, valid_size)
ljspeech_train = SliceDataset(ljspeech, valid_size, len(ljspeech))
model_config = config["model"]
n_loop = model_config["n_loop"]
n_layer = model_config["n_layer"]
filter_size = model_config["filter_size"]
context_size = 1 + n_layer * sum([filter_size**i for i in range(n_loop)])
print("context size is {} samples".format(context_size))
train_batch_fn = DataCollector(context_size, sample_rate, hop_length,
train_clip_seconds)
valid_batch_fn = DataCollector(
context_size, sample_rate, hop_length, train_clip_seconds, valid=True)
batch_size = data_config["batch_size"]
train_cargo = DataCargo(
ljspeech_train,
train_batch_fn,
batch_size,
sampler=RandomSampler(ljspeech_train))
# only batch=1 for validation is enabled
valid_cargo = DataCargo(
ljspeech_valid,
valid_batch_fn,
batch_size=1,
sampler=SequentialSampler(ljspeech_valid))
if not os.path.exists(args.output):
os.makedirs(args.output)
if args.device == -1:
place = fluid.CPUPlace()
else:
place = fluid.CUDAPlace(args.device)
with dg.guard(place):
model_config = config["model"]
upsampling_factors = model_config["upsampling_factors"]
encoder = UpsampleNet(upsampling_factors)
n_loop = model_config["n_loop"]
n_layer = model_config["n_layer"]
residual_channels = model_config["residual_channels"]
output_dim = model_config["output_dim"]
loss_type = model_config["loss_type"]
log_scale_min = model_config["log_scale_min"]
decoder = WaveNet(n_loop, n_layer, residual_channels, output_dim,
n_mels, filter_size, loss_type, log_scale_min)
model = ConditionalWavenet(encoder, decoder)
summary(model)
# load model parameters
checkpoint_dir = os.path.join(args.output, "checkpoints")
if args.checkpoint:
iteration = io.load_parameters(
model, checkpoint_path=args.checkpoint)
else:
iteration = io.load_parameters(
model, checkpoint_dir=checkpoint_dir, iteration=args.iteration)
assert iteration > 0, "A trained model is needed."
# WARNING: don't forget to remove weight norm to re-compute each wrapped layer's weight
# removing weight norm also speeds up computation
for layer in model.sublayers():
if isinstance(layer, WeightNormWrapper):
layer.remove_weight_norm()
train_loader = fluid.io.DataLoader.from_generator(
capacity=10, return_list=True)
train_loader.set_batch_generator(train_cargo, place)
valid_loader = fluid.io.DataLoader.from_generator(
capacity=10, return_list=True)
valid_loader.set_batch_generator(valid_cargo, place)
synthesis_dir = os.path.join(args.output, "synthesis")
if not os.path.exists(synthesis_dir):
os.makedirs(synthesis_dir)
eval_model(model, valid_loader, synthesis_dir, iteration, sample_rate)