ParakeetRebeccaRosario/tests/test_masking.py

55 lines
1.9 KiB
Python

import unittest
import numpy as np
import paddle
paddle.set_default_dtype("float64")
from parakeet.modules import masking
def sequence_mask(lengths, max_length=None, dtype="bool"):
max_length = max_length or np.max(lengths)
ids = np.arange(max_length)
return (ids < np.expand_dims(lengths, -1)).astype(dtype)
def future_mask(lengths, max_length=None, dtype="bool"):
max_length = max_length or np.max(lengths)
return np.tril(np.tril(np.ones(max_length))).astype(dtype)
class TestIDMask(unittest.TestCase):
def test(self):
ids = paddle.to_tensor(
[[1, 2, 3, 0, 0, 0],
[2, 4, 5, 6, 0, 0],
[7, 8, 9, 0, 0, 0]]
)
mask = masking.id_mask(ids)
self.assertTupleEqual(mask.numpy().shape, ids.numpy().shape)
print(mask.numpy())
class TestFeatureMask(unittest.TestCase):
def test(self):
features = np.random.randn(3, 16, 8)
lengths = [16, 14, 12]
for i, length in enumerate(lengths):
features[i, length:, :] = 0
feature_tensor = paddle.to_tensor(features)
mask = masking.feature_mask(feature_tensor, -1)
self.assertTupleEqual(mask.numpy().shape, (3, 16, 1))
print(mask.numpy().squeeze())
class TestCombineMask(unittest.TestCase):
def test_bool_mask(self):
lengths = np.array([12, 8, 9, 10])
padding_mask = sequence_mask(lengths, dtype="bool")
no_future_mask = future_mask(lengths, dtype="bool")
combined_mask1 = np.expand_dims(padding_mask, 1) * no_future_mask
print(paddle.to_tensor(padding_mask).dtype)
print(paddle.to_tensor(no_future_mask).dtype)
combined_mask2 = masking.combine_mask(
paddle.to_tensor(padding_mask).unsqueeze(1), paddle.to_tensor(no_future_mask)
)
np.testing.assert_allclose(combined_mask2.numpy(), combined_mask1)