162 lines
6.0 KiB
Python
162 lines
6.0 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from scipy.io.wavfile import write
|
|
from parakeet.g2p.en import text_to_sequence
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
from matplotlib import cm
|
|
from tensorboardX import SummaryWriter
|
|
from ruamel import yaml
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dg
|
|
from pathlib import Path
|
|
import argparse
|
|
from parse import add_config_options_to_parser
|
|
from pprint import pprint
|
|
from collections import OrderedDict
|
|
from parakeet.models.transformer_tts.utils import *
|
|
from parakeet import audio
|
|
from parakeet.models.transformer_tts.vocoder import Vocoder
|
|
from parakeet.models.transformer_tts.transformer_tts import TransformerTTS
|
|
|
|
|
|
def load_checkpoint(step, model_path):
|
|
model_dict, _ = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
|
|
new_state_dict = OrderedDict()
|
|
for param in model_dict:
|
|
if param.startswith('_layers.'):
|
|
new_state_dict[param[8:]] = model_dict[param]
|
|
else:
|
|
new_state_dict[param] = model_dict[param]
|
|
return new_state_dict
|
|
|
|
|
|
def synthesis(text_input, args):
|
|
place = (fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace())
|
|
|
|
with open(args.config_path) as f:
|
|
cfg = yaml.load(f, Loader=yaml.Loader)
|
|
|
|
# tensorboard
|
|
if not os.path.exists(args.log_dir):
|
|
os.mkdir(args.log_dir)
|
|
path = os.path.join(args.log_dir, 'synthesis')
|
|
|
|
writer = SummaryWriter(path)
|
|
|
|
with dg.guard(place):
|
|
with fluid.unique_name.guard():
|
|
model = TransformerTTS(cfg)
|
|
model.set_dict(
|
|
load_checkpoint(
|
|
str(args.transformer_step),
|
|
os.path.join(args.checkpoint_path, "transformer")))
|
|
model.eval()
|
|
|
|
with fluid.unique_name.guard():
|
|
model_vocoder = Vocoder(cfg, args.batch_size)
|
|
model_vocoder.set_dict(
|
|
load_checkpoint(
|
|
str(args.vocoder_step),
|
|
os.path.join(args.checkpoint_path, "vocoder")))
|
|
model_vocoder.eval()
|
|
# init input
|
|
text = np.asarray(text_to_sequence(text_input))
|
|
text = fluid.layers.unsqueeze(dg.to_variable(text), [0])
|
|
mel_input = dg.to_variable(np.zeros([1, 1, 80])).astype(np.float32)
|
|
pos_text = np.arange(1, text.shape[1] + 1)
|
|
pos_text = fluid.layers.unsqueeze(dg.to_variable(pos_text), [0])
|
|
|
|
pbar = tqdm(range(args.max_len))
|
|
for i in pbar:
|
|
dec_slf_mask = get_triu_tensor(
|
|
mel_input.numpy(), mel_input.numpy()).astype(np.float32)
|
|
dec_slf_mask = fluid.layers.cast(
|
|
dg.to_variable(dec_slf_mask != 0), np.float32) * (-2**32 + 1)
|
|
pos_mel = np.arange(1, mel_input.shape[1] + 1)
|
|
pos_mel = fluid.layers.unsqueeze(dg.to_variable(pos_mel), [0])
|
|
mel_pred, postnet_pred, attn_probs, stop_preds, attn_enc, attn_dec = model(
|
|
text, mel_input, pos_text, pos_mel, dec_slf_mask)
|
|
mel_input = fluid.layers.concat(
|
|
[mel_input, postnet_pred[:, -1:, :]], axis=1)
|
|
|
|
mag_pred = model_vocoder(postnet_pred)
|
|
|
|
_ljspeech_processor = audio.AudioProcessor(
|
|
sample_rate=cfg['audio']['sr'],
|
|
num_mels=cfg['audio']['num_mels'],
|
|
min_level_db=cfg['audio']['min_level_db'],
|
|
ref_level_db=cfg['audio']['ref_level_db'],
|
|
n_fft=cfg['audio']['n_fft'],
|
|
win_length=cfg['audio']['win_length'],
|
|
hop_length=cfg['audio']['hop_length'],
|
|
power=cfg['audio']['power'],
|
|
preemphasis=cfg['audio']['preemphasis'],
|
|
signal_norm=True,
|
|
symmetric_norm=False,
|
|
max_norm=1.,
|
|
mel_fmin=0,
|
|
mel_fmax=None,
|
|
clip_norm=True,
|
|
griffin_lim_iters=60,
|
|
do_trim_silence=False,
|
|
sound_norm=False)
|
|
|
|
wav = _ljspeech_processor.inv_spectrogram(
|
|
fluid.layers.transpose(
|
|
fluid.layers.squeeze(mag_pred, [0]), [1, 0]).numpy())
|
|
global_step = 0
|
|
for i, prob in enumerate(attn_probs):
|
|
for j in range(4):
|
|
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
|
|
writer.add_image(
|
|
'Attention_%d_0' % global_step,
|
|
x,
|
|
i * 4 + j,
|
|
dataformats="HWC")
|
|
|
|
for i, prob in enumerate(attn_enc):
|
|
for j in range(4):
|
|
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
|
|
writer.add_image(
|
|
'Attention_enc_%d_0' % global_step,
|
|
x,
|
|
i * 4 + j,
|
|
dataformats="HWC")
|
|
|
|
for i, prob in enumerate(attn_dec):
|
|
for j in range(4):
|
|
x = np.uint8(cm.viridis(prob.numpy()[j]) * 255)
|
|
writer.add_image(
|
|
'Attention_dec_%d_0' % global_step,
|
|
x,
|
|
i * 4 + j,
|
|
dataformats="HWC")
|
|
writer.add_audio(text_input, wav, 0, cfg['audio']['sr'])
|
|
if not os.path.exists(args.sample_path):
|
|
os.mkdir(args.sample_path)
|
|
write(
|
|
os.path.join(args.sample_path, 'test.wav'), cfg['audio']['sr'],
|
|
wav)
|
|
writer.close()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description="Synthesis model")
|
|
add_config_options_to_parser(parser)
|
|
args = parser.parse_args()
|
|
synthesis("Parakeet stands for Paddle PARAllel text-to-speech toolkit.",
|
|
args)
|