94 lines
3.2 KiB
Python
94 lines
3.2 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import paddle.fluid.dygraph as dg
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid as fluid
|
|
import math
|
|
from parakeet.modules.customized import Conv1D
|
|
|
|
|
|
class PositionwiseFeedForward(dg.Layer):
|
|
def __init__(self,
|
|
d_in,
|
|
num_hidden,
|
|
filter_size,
|
|
padding=0,
|
|
use_cudnn=True,
|
|
dropout=0.1):
|
|
"""A two-feed-forward-layer module.
|
|
|
|
Args:
|
|
d_in (int): the size of input channel.
|
|
num_hidden (int): the size of hidden layer in network.
|
|
filter_size (int): the filter size of Conv
|
|
padding (int, optional): the padding size of Conv. Defaults to 0.
|
|
use_cudnn (bool, optional): use cudnn in Conv or not. Defaults to True.
|
|
dropout (float, optional): dropout probability. Defaults to 0.1.
|
|
"""
|
|
super(PositionwiseFeedForward, self).__init__()
|
|
self.num_hidden = num_hidden
|
|
self.use_cudnn = use_cudnn
|
|
self.dropout = dropout
|
|
|
|
k = math.sqrt(1 / d_in)
|
|
self.w_1 = Conv1D(
|
|
num_channels=d_in,
|
|
num_filters=num_hidden,
|
|
filter_size=filter_size,
|
|
padding=padding,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.XavierInitializer()),
|
|
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
|
low=-k, high=k)),
|
|
use_cudnn=use_cudnn)
|
|
k = math.sqrt(1 / num_hidden)
|
|
self.w_2 = Conv1D(
|
|
num_channels=num_hidden,
|
|
num_filters=d_in,
|
|
filter_size=filter_size,
|
|
padding=padding,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.XavierInitializer()),
|
|
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
|
|
low=-k, high=k)),
|
|
use_cudnn=use_cudnn)
|
|
self.layer_norm = dg.LayerNorm(d_in)
|
|
|
|
def forward(self, input):
|
|
"""
|
|
Compute feed forward network result.
|
|
|
|
Args:
|
|
input (Variable): shape(B, T, C), dtype float32, the input value.
|
|
|
|
Returns:
|
|
output (Variable): shape(B, T, C), the result after FFN.
|
|
"""
|
|
x = layers.transpose(input, [0, 2, 1])
|
|
#FFN Networt
|
|
x = self.w_2(layers.relu(self.w_1(x)))
|
|
|
|
# dropout
|
|
x = layers.dropout(
|
|
x, self.dropout, dropout_implementation='upscale_in_train')
|
|
|
|
x = layers.transpose(x, [0, 2, 1])
|
|
# residual connection
|
|
x = x + input
|
|
|
|
#layer normalization
|
|
output = self.layer_norm(x)
|
|
|
|
return output
|