88 lines
2.8 KiB
Python
88 lines
2.8 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import matplotlib
|
|
matplotlib.use("Agg")
|
|
import matplotlib.pylab as plt
|
|
from matplotlib import cm, pyplot
|
|
|
|
__all__ = [
|
|
"pack_attention_images", "add_attention_plots", "plot_alignment",
|
|
"min_max_normalize"
|
|
]
|
|
|
|
|
|
def pack_attention_images(attention_weights, rotate=False):
|
|
# add a box
|
|
attention_weights = np.pad(attention_weights, [(0, 0), (1, 1), (1, 1)],
|
|
mode="constant",
|
|
constant_values=1.)
|
|
if rotate:
|
|
attention_weights = np.rot90(attention_weights, axes=(1, 2))
|
|
n, h, w = attention_weights.shape
|
|
|
|
ratio = h / w
|
|
if ratio < 1:
|
|
cols = max(int(np.sqrt(n / ratio)), 1)
|
|
rows = int(np.ceil(n / cols))
|
|
else:
|
|
rows = max(int(np.sqrt(n / ratio)), 1)
|
|
cols = int(np.ceil(n / rows))
|
|
extras = rows * cols - n
|
|
#print(rows, cols, extras)
|
|
total = np.append(attention_weights, np.zeros([extras, h, w]), axis=0)
|
|
total = np.reshape(total, [rows, cols, h, w])
|
|
img = np.block([[total[i, j] for j in range(cols)] for i in range(rows)])
|
|
return img
|
|
|
|
|
|
def plot_alignment(alignment, title=None):
|
|
fig, ax = plt.subplots(figsize=(6, 4))
|
|
im = ax.imshow(
|
|
alignment, aspect='auto', origin='lower', interpolation='none')
|
|
fig.colorbar(im, ax=ax)
|
|
xlabel = 'Decoder timestep'
|
|
if title is not None:
|
|
xlabel += '\n\n' + title
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel('Encoder timestep')
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
def add_attention_plots(writer, tag, attention_weights, global_step):
|
|
img = plot_alignment(attention_weights.numpy().T)
|
|
writer.add_image(tag, img, global_step, dataformats="HWC")
|
|
|
|
|
|
def add_multi_attention_plots(writer, tag, attention_weights, global_step):
|
|
attns = [attn[0].numpy() for attn in attention_weights]
|
|
for i, attn in enumerate(attns):
|
|
img = pack_attention_images(attn)
|
|
writer.add_image(
|
|
f"{tag}/{i}",
|
|
cm.plasma(img),
|
|
global_step=global_step,
|
|
dataformats="HWC")
|
|
|
|
|
|
def min_max_normalize(v):
|
|
return (v - v.min()) / (v.max() - v.min())
|