173 lines
5.9 KiB
Python
173 lines
5.9 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import time
|
|
|
|
import ruamel.yaml
|
|
import numpy as np
|
|
import paddle.fluid.dygraph as dg
|
|
from paddle.fluid.framework import convert_np_dtype_to_dtype_ as convert_np_dtype
|
|
|
|
|
|
def is_main_process():
|
|
local_rank = dg.parallel.Env().local_rank
|
|
return local_rank == 0
|
|
|
|
|
|
def add_yaml_config_to_args(config):
|
|
""" Add args in yaml config to the args parsed by argparse. The argument in
|
|
yaml config will be overwritten by the same argument in argparse if they
|
|
are both valid.
|
|
|
|
Args:
|
|
config (args): the args returned by `argparse.ArgumentParser().parse_args()`
|
|
|
|
Returns:
|
|
config: the args added yaml config.
|
|
"""
|
|
with open(config.config, 'rt') as f:
|
|
yaml_cfg = ruamel.yaml.safe_load(f)
|
|
cfg_vars = vars(config)
|
|
for k, v in yaml_cfg.items():
|
|
if k in cfg_vars and cfg_vars[k] is not None:
|
|
continue
|
|
cfg_vars[k] = v
|
|
return config
|
|
|
|
|
|
def _load_latest_checkpoint(checkpoint_dir):
|
|
"""Get the iteration number corresponding to the latest saved checkpoint
|
|
|
|
Args:
|
|
checkpoint_dir (str): the directory where checkpoint is saved.
|
|
|
|
Returns:
|
|
int: the latest iteration number.
|
|
"""
|
|
checkpoint_record = os.path.join(checkpoint_dir, "checkpoint")
|
|
# Create checkpoint index file if not exist.
|
|
if (not os.path.isfile(checkpoint_record)):
|
|
return 0
|
|
|
|
# Fetch the latest checkpoint index.
|
|
with open(checkpoint_record, "r") as handle:
|
|
latest_checkpoint = handle.readline().split()[-1]
|
|
iteration = int(latest_checkpoint.split("-")[-1])
|
|
|
|
return iteration
|
|
|
|
|
|
def _save_checkpoint(checkpoint_dir, iteration):
|
|
"""Save the iteration number of the latest model to be checkpointed.
|
|
|
|
Args:
|
|
checkpoint_dir (str): the directory where checkpoint is saved.
|
|
iteration (int): the latest iteration number.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
checkpoint_record = os.path.join(checkpoint_dir, "checkpoint")
|
|
# Update the latest checkpoint index.
|
|
with open(checkpoint_record, "w") as handle:
|
|
handle.write("model_checkpoint_path: step-{}".format(iteration))
|
|
|
|
|
|
def load_parameters(model,
|
|
optimizer=None,
|
|
checkpoint_dir=None,
|
|
iteration=None,
|
|
checkpoint_path=None):
|
|
"""Load a specific model checkpoint from disk.
|
|
|
|
Args:
|
|
model (obj): model to load parameters.
|
|
optimizer (obj, optional): optimizer to load states if needed.
|
|
Defaults to None.
|
|
checkpoint_dir (str, optional): the directory where checkpoint is saved.
|
|
iteration (int, optional): if specified, load the specific checkpoint,
|
|
if not specified, load the latest one. Defaults to None.
|
|
checkpoint_path (str, optional): if specified, load the checkpoint
|
|
stored in the checkpoint_path and the argument 'checkpoint_dir' will
|
|
be ignored. Defaults to None.
|
|
|
|
Returns:
|
|
iteration (int): number of iterations that the loaded checkpoint has
|
|
been trained.
|
|
"""
|
|
if checkpoint_path is not None:
|
|
iteration = int(os.path.basename(checkpoint_path).split("-")[-1])
|
|
elif checkpoint_dir is not None:
|
|
if iteration is None:
|
|
iteration = _load_latest_checkpoint(checkpoint_dir)
|
|
if iteration == 0:
|
|
return iteration
|
|
checkpoint_path = os.path.join(checkpoint_dir,
|
|
"step-{}".format(iteration))
|
|
else:
|
|
raise ValueError(
|
|
"At least one of 'checkpoint_dir' and 'checkpoint_path' should be specified!"
|
|
)
|
|
|
|
local_rank = dg.parallel.Env().local_rank
|
|
model_dict, optimizer_dict = dg.load_dygraph(checkpoint_path)
|
|
|
|
state_dict = model.state_dict()
|
|
|
|
# cast to desired data type, for mixed-precision training/inference.
|
|
for k, v in model_dict.items():
|
|
if k in state_dict and convert_np_dtype(v.dtype) != state_dict[
|
|
k].dtype:
|
|
model_dict[k] = v.astype(state_dict[k].numpy().dtype)
|
|
|
|
model.set_dict(model_dict)
|
|
|
|
print("[checkpoint] Rank {}: loaded model from {}.pdparams".format(
|
|
local_rank, checkpoint_path))
|
|
|
|
if optimizer and optimizer_dict:
|
|
optimizer.set_dict(optimizer_dict)
|
|
print("[checkpoint] Rank {}: loaded optimizer state from {}.pdopt".
|
|
format(local_rank, checkpoint_path))
|
|
|
|
return iteration
|
|
|
|
|
|
def save_parameters(checkpoint_dir, iteration, model, optimizer=None):
|
|
"""Checkpoint the latest trained model parameters.
|
|
|
|
Args:
|
|
checkpoint_dir (str): the directory where checkpoint is saved.
|
|
iteration (int): the latest iteration number.
|
|
model (obj): model to be checkpointed.
|
|
optimizer (obj, optional): optimizer to be checkpointed.
|
|
Defaults to None.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
checkpoint_path = os.path.join(checkpoint_dir, "step-{}".format(iteration))
|
|
model_dict = model.state_dict()
|
|
dg.save_dygraph(model_dict, checkpoint_path)
|
|
print("[checkpoint] Saved model to {}.pdparams".format(checkpoint_path))
|
|
|
|
if optimizer:
|
|
opt_dict = optimizer.state_dict()
|
|
dg.save_dygraph(opt_dict, checkpoint_path)
|
|
print("[checkpoint] Saved optimzier state to {}.pdopt".format(
|
|
checkpoint_path))
|
|
|
|
_save_checkpoint(checkpoint_dir, iteration)
|