143 lines
4.5 KiB
Python
143 lines
4.5 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Normalize feature files and dump them."""
|
|
|
|
import argparse
|
|
import logging
|
|
from operator import itemgetter
|
|
from pathlib import Path
|
|
|
|
import jsonlines
|
|
import numpy as np
|
|
from parakeet.datasets.data_table import DataTable
|
|
from sklearn.preprocessing import StandardScaler
|
|
from tqdm import tqdm
|
|
|
|
from config import get_cfg_default
|
|
|
|
|
|
def main():
|
|
"""Run preprocessing process."""
|
|
parser = argparse.ArgumentParser(
|
|
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
|
|
)
|
|
parser.add_argument(
|
|
"--metadata",
|
|
type=str,
|
|
required=True,
|
|
help="directory including feature files to be normalized. "
|
|
"you need to specify either *-scp or rootdir.")
|
|
parser.add_argument(
|
|
"--dumpdir",
|
|
type=str,
|
|
required=True,
|
|
help="directory to dump normalized feature files.")
|
|
parser.add_argument(
|
|
"--stats", type=str, required=True, help="statistics file.")
|
|
parser.add_argument(
|
|
"--skip-wav-copy",
|
|
default=False,
|
|
action="store_true",
|
|
help="whether to skip the copy of wav files.")
|
|
parser.add_argument(
|
|
"--config", type=str, help="yaml format configuration file.")
|
|
parser.add_argument(
|
|
"--verbose",
|
|
type=int,
|
|
default=1,
|
|
help="logging level. higher is more logging. (default=1)")
|
|
args = parser.parse_args()
|
|
|
|
# set logger
|
|
if args.verbose > 1:
|
|
logging.basicConfig(
|
|
level=logging.DEBUG,
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
|
|
)
|
|
elif args.verbose > 0:
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
|
|
)
|
|
else:
|
|
logging.basicConfig(
|
|
level=logging.WARN,
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"
|
|
)
|
|
logging.warning('Skip DEBUG/INFO messages')
|
|
|
|
# load config
|
|
config = get_cfg_default()
|
|
if args.config:
|
|
config.merge_from_file(args.config)
|
|
|
|
# check directory existence
|
|
dumpdir = Path(args.dumpdir).resolve()
|
|
dumpdir.mkdir(parents=True, exist_ok=True)
|
|
|
|
# get dataset
|
|
with jsonlines.open(args.metadata, 'r') as reader:
|
|
metadata = list(reader)
|
|
dataset = DataTable(
|
|
metadata,
|
|
fields=["utt_id", "wave", "feats"],
|
|
converters={
|
|
'utt_id': None,
|
|
'wave': None if args.skip_wav_copy else np.load,
|
|
'feats': np.load,
|
|
})
|
|
logging.info(f"The number of files = {len(dataset)}.")
|
|
|
|
# restore scaler
|
|
scaler = StandardScaler()
|
|
scaler.mean_ = np.load(args.stats)[0]
|
|
scaler.scale_ = np.load(args.stats)[1]
|
|
|
|
# from version 0.23.0, this information is needed
|
|
scaler.n_features_in_ = scaler.mean_.shape[0]
|
|
|
|
# process each file
|
|
output_metadata = []
|
|
|
|
for item in tqdm(dataset):
|
|
utt_id = item['utt_id']
|
|
wave = item['wave']
|
|
mel = item['feats']
|
|
# normalize
|
|
mel = scaler.transform(mel)
|
|
|
|
# save
|
|
mel_path = dumpdir / f"{utt_id}-feats.npy"
|
|
np.save(mel_path, mel.astype(np.float32), allow_pickle=False)
|
|
if not args.skip_wav_copy:
|
|
wav_path = dumpdir / f"{utt_id}-wave.npy"
|
|
np.save(wav_path, wave.astype(np.float32), allow_pickle=False)
|
|
else:
|
|
wav_path = wave
|
|
output_metadata.append({
|
|
'utt_id': utt_id,
|
|
'wave': str(wav_path),
|
|
'feats': str(mel_path),
|
|
})
|
|
output_metadata.sort(key=itemgetter('utt_id'))
|
|
output_metadata_path = Path(args.dumpdir) / "metadata.jsonl"
|
|
with jsonlines.open(output_metadata_path, 'w') as writer:
|
|
for item in output_metadata:
|
|
writer.write(item)
|
|
logging.info(f"metadata dumped into {output_metadata_path}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|