ParakeetRebeccaRosario/examples/parallelwave_gan/baker/synthesize_from_wav.py

112 lines
3.4 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import logging
from pathlib import Path
import librosa
import numpy as np
import paddle
import soundfile as sf
import yaml
from parakeet.data.get_feats import LogMelFBank
from parakeet.models.parallel_wavegan import PWGGenerator, PWGInference
from parakeet.modules.normalizer import ZScore
from config import get_cfg_default
def evaluate(args, config):
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
vocoder = PWGGenerator(**config["generator_params"])
state_dict = paddle.load(args.checkpoint)
vocoder.set_state_dict(state_dict["generator_params"])
vocoder.remove_weight_norm()
vocoder.eval()
print("model done!")
stat = np.load(args.stat)
mu, std = stat
mu = paddle.to_tensor(mu)
std = paddle.to_tensor(std)
normalizer = ZScore(mu, std)
pwg_inference = PWGInference(normalizer, vocoder)
input_dir = Path(args.input_dir)
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
mel_extractor = LogMelFBank(
sr=config.sr,
n_fft=config.n_fft,
hop_length=config.hop_length,
win_length=config.win_length,
window=config.window,
n_mels=config.n_mels,
fmin=config.fmin,
fmax=config.fmax)
for utt_name in os.listdir(input_dir):
wav, _ = librosa.load(str(input_dir / utt_name), sr=config.sr)
# extract mel feats
mel = mel_extractor.get_log_mel_fbank(wav)
mel = paddle.to_tensor(mel)
gen_wav = pwg_inference(mel)
sf.write(
str(output_dir / ("gen_" + utt_name)),
gen_wav.numpy(),
samplerate=config.sr)
print(f"{utt_name} done!")
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(
description="Synthesize with parallel wavegan.")
parser.add_argument(
"--config", type=str, help="config file to overwrite default config.")
parser.add_argument("--checkpoint", type=str, help="snapshot to load.")
parser.add_argument(
"--stat",
type=str,
help="mean and standard deviation used to normalize spectrogram when training parallel wavegan."
)
parser.add_argument("--input-dir", type=str, help="input dir of wavs.")
parser.add_argument("--output-dir", type=str, help="output dir.")
parser.add_argument(
"--device", type=str, default="gpu", help="device to run.")
parser.add_argument("--verbose", type=int, default=1, help="verbose.")
args = parser.parse_args()
config = get_cfg_default()
if args.config:
config.merge_from_file(args.config)
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
evaluate(args, config)
if __name__ == "__main__":
main()