ParakeetRebeccaRosario/examples/transformer_tts/config.py

69 lines
2.8 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from yacs.config import CfgNode as CN
_C = CN()
_C.data = CN(
dict(
batch_size=16, # batch size
valid_size=64, # the first N examples are reserved for validation
sample_rate=22050, # Hz, sample rate
n_fft=1024, # fft frame size
win_length=1024, # window size
hop_length=256, # hop size between ajacent frame
fmin=0, # Hz, min frequency when converting to mel
fmax=8000, # Hz, max frequency when converting to mel
n_mels=80, # mel bands
padding_idx=0, # text embedding's padding index
mel_start_value=0.5, # value for starting frame
mel_end_value=-0.5, # # value for ending frame
))
_C.model = CN(
dict(
d_encoder=512, # embedding & encoder's internal size
d_decoder=256, # decoder's internal size
n_heads=4, # actually it can differ at each layer
d_ffn=1024, # encoder_d_ffn & decoder_d_ffn
encoder_layers=4, # number of transformer encoder layer
decoder_layers=4, # number of transformer decoder layer
d_prenet=256, # decoder prenet's hidden size (n_mels=>d_prenet=>d_decoder)
d_postnet=256, # decoder postnet(cnn)'s internal channel
postnet_layers=5, # decoder postnet(cnn)'s layer
postnet_kernel_size=5, # decoder postnet(cnn)'s kernel size
max_reduction_factor=10, # max_reduction factor
dropout=0.1, # global droput probability
stop_loss_scale=8.0, # scaler for stop _loss
decoder_prenet_dropout=0.5, # decoder prenet dropout probability
))
_C.training = CN(
dict(
lr=1e-4, # learning rate
drop_n_heads=[[0, 0], [15000, 1]],
reduction_factor=[[0, 10], [80000, 4], [200000, 2]],
plot_interval=1000, # plot attention and spectrogram
valid_interval=1000, # validation
save_interval=10000, # checkpoint
max_iteration=500000, # max iteration to train
))
def get_cfg_defaults():
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
return _C.clone()