ParakeetRebeccaRosario/examples/transformer_tts/synthesize.py

104 lines
3.5 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
import numpy as np
import paddle
from matplotlib import pyplot as plt
from parakeet.frontend import English
from parakeet.models.transformer_tts import TransformerTTS
from parakeet.utils import display
from config import get_cfg_defaults
def main(config, args):
paddle.set_device(args.device)
# model
frontend = English()
model = TransformerTTS.from_pretrained(frontend, config,
args.checkpoint_path)
model.eval()
# inputs
input_path = Path(args.input).expanduser()
with open(input_path, "rt") as f:
sentences = f.readlines()
output_dir = Path(args.output).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
for i, sentence in enumerate(sentences):
if args.verbose:
print("text: ", sentence)
print("phones: ", frontend.phoneticize(sentence))
text_ids = paddle.to_tensor(frontend(sentence))
text_ids = paddle.unsqueeze(text_ids, 0) # (1, T)
with paddle.no_grad():
outputs = model.infer(text_ids, verbose=args.verbose)
mel_output = outputs["mel_output"][0].numpy()
cross_attention_weights = outputs["cross_attention_weights"]
attns = np.stack([attn[0].numpy() for attn in cross_attention_weights])
attns = np.transpose(attns, [0, 1, 3, 2])
display.plot_multilayer_multihead_alignments(attns)
plt.savefig(str(output_dir / f"sentence_{i}.png"))
mel_output = mel_output.T # (C, T)
np.save(str(output_dir / f"sentence_{i}"), mel_output)
if args.verbose:
print("spectrogram saved at {}".format(output_dir /
f"sentence_{i}.npy"))
if __name__ == "__main__":
config = get_cfg_defaults()
parser = argparse.ArgumentParser(
description="generate mel spectrogram with TransformerTTS.")
parser.add_argument(
"--config",
type=str,
metavar="FILE",
help="extra config to overwrite the default config")
parser.add_argument(
"--checkpoint_path", type=str, help="path of the checkpoint to load.")
parser.add_argument("--input", type=str, help="path of the text sentences")
parser.add_argument("--output", type=str, help="path to save outputs")
parser.add_argument(
"--device", type=str, default="cpu", help="device type to use.")
parser.add_argument(
"--opts",
nargs=argparse.REMAINDER,
help="options to overwrite --config file and the default config, passing in KEY VALUE pairs"
)
parser.add_argument(
"-v", "--verbose", action="store_true", help="print msg")
args = parser.parse_args()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
print(args)
main(config, args)