ParakeetRebeccaRosario/parakeet/models/deepvoice3/data.py

329 lines
11 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import random
import io
import platform
from os.path import dirname, join
from nnmnkwii.datasets import FileSourceDataset, FileDataSource
from os.path import join, expanduser
import random
# import global hyper parameters
from hparams import hparams
from parakeet import g2p as frontend
import builder
_frontend = getattr(frontend, hparams.frontend)
def _pad(seq, max_len, constant_values=0):
return np.pad(seq, (0, max_len - len(seq)),
mode="constant",
constant_values=constant_values)
def _pad_2d(x, max_len, b_pad=0):
x = np.pad(x, [(b_pad, max_len - len(x) - b_pad), (0, 0)],
mode="constant",
constant_values=0)
return x
class TextDataSource(FileDataSource):
def __init__(self, data_root, speaker_id=None):
self.data_root = data_root
self.speaker_ids = None
self.multi_speaker = False
# If not None, filter by speaker_id
self.speaker_id = speaker_id
def collect_files(self):
meta = join(self.data_root, "train.txt")
with io.open(meta, "rt", encoding="utf-8") as f:
lines = f.readlines()
l = lines[0].split("|")
assert len(l) == 4 or len(l) == 5
self.multi_speaker = len(l) == 5
texts = list(map(lambda l: l.split("|")[3], lines))
if self.multi_speaker:
speaker_ids = list(map(lambda l: int(l.split("|")[-1]), lines))
# Filter by speaker_id
# using multi-speaker dataset as a single speaker dataset
if self.speaker_id is not None:
indices = np.array(speaker_ids) == self.speaker_id
texts = list(np.array(texts)[indices])
self.multi_speaker = False
return texts
return texts, speaker_ids
else:
return texts
def collect_features(self, *args):
if self.multi_speaker:
text, speaker_id = args
else:
text = args[0]
global _frontend
if _frontend is None:
_frontend = getattr(frontend, hparams.frontend)
seq = _frontend.text_to_sequence(
text, p=hparams.replace_pronunciation_prob)
if platform.system() == "Windows":
if hasattr(hparams, "gc_probability"):
_frontend = None # memory leaking prevention in Windows
if np.random.rand() < hparams.gc_probability:
gc.collect() # garbage collection enforced
print("GC done")
if self.multi_speaker:
return np.asarray(seq, dtype=np.int32), int(speaker_id)
else:
return np.asarray(seq, dtype=np.int32)
class _NPYDataSource(FileDataSource):
def __init__(self, data_root, col, speaker_id=None):
self.data_root = data_root
self.col = col
self.frame_lengths = []
self.speaker_id = speaker_id
def collect_files(self):
meta = join(self.data_root, "train.txt")
with io.open(meta, "rt", encoding="utf-8") as f:
lines = f.readlines()
l = lines[0].split("|")
assert len(l) == 4 or len(l) == 5
multi_speaker = len(l) == 5
self.frame_lengths = list(map(lambda l: int(l.split("|")[2]), lines))
paths = list(map(lambda l: l.split("|")[self.col], lines))
paths = list(map(lambda f: join(self.data_root, f), paths))
if multi_speaker and self.speaker_id is not None:
speaker_ids = list(map(lambda l: int(l.split("|")[-1]), lines))
# Filter by speaker_id
# using multi-speaker dataset as a single speaker dataset
indices = np.array(speaker_ids) == self.speaker_id
paths = list(np.array(paths)[indices])
self.frame_lengths = list(np.array(self.frame_lengths)[indices])
# aha, need to cast numpy.int64 to int
self.frame_lengths = list(map(int, self.frame_lengths))
return paths
def collect_features(self, path):
return np.load(path)
class MelSpecDataSource(_NPYDataSource):
def __init__(self, data_root, speaker_id=None):
super(MelSpecDataSource, self).__init__(data_root, 1, speaker_id)
class LinearSpecDataSource(_NPYDataSource):
def __init__(self, data_root, speaker_id=None):
super(LinearSpecDataSource, self).__init__(data_root, 0, speaker_id)
class PartialyRandomizedSimilarTimeLengthSampler(object):
"""Partially randmoized sampler
1. Sort by lengths
2. Pick a small patch and randomize it
3. Permutate mini-batchs
"""
def __init__(self,
lengths,
batch_size=16,
batch_group_size=None,
permutate=True):
self.sorted_indices = np.argsort(lengths)
self.lengths = np.array(lengths)[self.sorted_indices]
self.batch_size = batch_size
if batch_group_size is None:
batch_group_size = min(batch_size * 32, len(self.lengths))
if batch_group_size % batch_size != 0:
batch_group_size -= batch_group_size % batch_size
self.batch_group_size = batch_group_size
assert batch_group_size % batch_size == 0
self.permutate = permutate
def __iter__(self):
indices = self.sorted_indices.copy()
batch_group_size = self.batch_group_size
s, e = 0, 0
for i in range(len(indices) // batch_group_size):
s = i * batch_group_size
e = s + batch_group_size
random.shuffle(indices[s:e])
# Permutate batches
if self.permutate:
perm = np.arange(len(indices[:e]) // self.batch_size)
random.shuffle(perm)
indices[:e] = indices[:e].reshape(
-1, self.batch_size)[perm, :].reshape(-1)
# Handle last elements
s += batch_group_size
if s < len(indices):
random.shuffle(indices[s:])
return iter(indices)
def __len__(self):
return len(self.sorted_indices)
class Dataset(object):
def __init__(self, X, Mel, Y):
self.X = X
self.Mel = Mel
self.Y = Y
# alias
self.multi_speaker = X.file_data_source.multi_speaker
def __getitem__(self, idx):
if self.multi_speaker:
text, speaker_id = self.X[idx]
return text, self.Mel[idx], self.Y[idx], speaker_id
else:
return self.X[idx], self.Mel[idx], self.Y[idx]
def __len__(self):
return len(self.X)
def make_loader(dataset, batch_size, shuffle, sampler, create_batch_fn,
trainer_count, local_rank):
assert not (
shuffle and
sampler), "shuffle and sampler should not be valid in the same time."
num_samples = len(dataset)
def wrapper():
if sampler is None:
ids = range(num_samples)
if shuffle:
random.shuffle(ids)
else:
ids = sampler
batch, batches = [], []
for idx in ids:
batch.append(dataset[idx])
if len(batch) >= batch_size:
batches.append(batch)
batch = []
if len(batches) >= trainer_count:
yield create_batch_fn(batches[local_rank])
batches = []
if len(batch) > 0:
batches.append(batch)
if len(batches) >= trainer_count:
yield create_batch_fn(batches[local_rank])
return wrapper
def create_batch(batch):
"""Create batch"""
r = hparams.outputs_per_step
downsample_step = hparams.downsample_step
multi_speaker = len(batch[0]) == 4
# Lengths
input_lengths = [len(x[0]) for x in batch]
max_input_len = max(input_lengths)
input_lengths = np.array(input_lengths, dtype=np.int64)
target_lengths = [len(x[1]) for x in batch]
max_target_len = max(target_lengths)
target_lengths = np.array(target_lengths, dtype=np.int64)
if max_target_len % (r * downsample_step) != 0:
max_target_len += (r * downsample_step) - max_target_len % (
r * downsample_step)
assert max_target_len % (r * downsample_step) == 0
# Set 0 for zero beginning padding
# imitates initial decoder states
b_pad = r
max_target_len += b_pad * downsample_step
x_batch = np.array(
[_pad(x[0], max_input_len) for x in batch], dtype=np.int64)
x_batch = np.expand_dims(x_batch, axis=-1)
mel_batch = np.array(
[_pad_2d(
x[1], max_target_len, b_pad=b_pad) for x in batch],
dtype=np.float32)
# down sampling is done here
if downsample_step > 1:
mel_batch = mel_batch[:, 0::downsample_step, :]
mel_batch = np.expand_dims(np.transpose(mel_batch, axes=[0, 2, 1]), axis=2)
y_batch = np.array(
[_pad_2d(
x[2], max_target_len, b_pad=b_pad) for x in batch],
dtype=np.float32)
y_batch = np.expand_dims(np.transpose(y_batch, axes=[0, 2, 1]), axis=2)
# text positions
text_positions = np.array(
[_pad(np.arange(1, len(x[0]) + 1), max_input_len) for x in batch],
dtype=np.int64)
text_positions = np.expand_dims(text_positions, axis=-1)
max_decoder_target_len = max_target_len // r // downsample_step
# frame positions
s, e = 1, max_decoder_target_len + 1
frame_positions = np.tile(
np.expand_dims(
np.arange(
s, e, dtype=np.int64), axis=0), (len(batch), 1))
frame_positions = np.expand_dims(frame_positions, axis=-1)
# done flags
done = np.array([
_pad(
np.zeros(
len(x[1]) // r // downsample_step - 1, dtype=np.float32),
max_decoder_target_len,
constant_values=1) for x in batch
])
done = np.expand_dims(np.expand_dims(done, axis=1), axis=1)
if multi_speaker:
speaker_ids = np.expand_dims(np.array([x[3] for x in batch]), axis=-1)
return (x_batch, input_lengths, mel_batch, y_batch, text_positions,
frame_positions, done, target_lengths, speaker_ids)
else:
speaker_ids = None
return (x_batch, input_lengths, mel_batch, y_batch, text_positions,
frame_positions, done, target_lengths)