204 lines
9.0 KiB
Python
204 lines
9.0 KiB
Python
from parakeet.models.transformerTTS.module import *
|
|
import paddle.fluid.dygraph as dg
|
|
import paddle.fluid as fluid
|
|
from parakeet.modules.layers import Conv1D, Linear
|
|
from parakeet.modules.utils import *
|
|
from parakeet.modules.multihead_attention import MultiheadAttention
|
|
from parakeet.modules.feed_forward import PositionwiseFeedForward
|
|
from parakeet.modules.prenet import PreNet
|
|
from parakeet.modules.post_convnet import PostConvNet
|
|
|
|
|
|
class Encoder(dg.Layer):
|
|
def __init__(self, embedding_size, num_hidden, config, num_head=4):
|
|
super(Encoder, self).__init__()
|
|
self.num_hidden = num_hidden
|
|
param = fluid.ParamAttr(initializer=fluid.initializer.Constant(value=1.0))
|
|
self.alpha = self.create_parameter(shape=(1, ), attr=param, dtype='float32')
|
|
self.pos_inp = get_sinusoid_encoding_table(1024, self.num_hidden, padding_idx=0)
|
|
self.pos_emb = dg.Embedding(size=[1024, num_hidden],
|
|
padding_idx=0,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.NumpyArrayInitializer(self.pos_inp),
|
|
trainable=False))
|
|
self.encoder_prenet = EncoderPrenet(embedding_size = embedding_size,
|
|
num_hidden = num_hidden,
|
|
use_cudnn=config.use_gpu)
|
|
self.layers = [MultiheadAttention(num_hidden, num_hidden//num_head, num_hidden//num_head) for _ in range(3)]
|
|
for i, layer in enumerate(self.layers):
|
|
self.add_sublayer("self_attn_{}".format(i), layer)
|
|
self.ffns = [PositionwiseFeedForward(num_hidden, num_hidden*num_head, filter_size=1, use_cudnn = config.use_gpu) for _ in range(3)]
|
|
for i, layer in enumerate(self.ffns):
|
|
self.add_sublayer("ffns_{}".format(i), layer)
|
|
|
|
def forward(self, x, positional):
|
|
if fluid.framework._dygraph_tracer()._train_mode:
|
|
query_mask = get_non_pad_mask(positional)
|
|
mask = get_attn_key_pad_mask(positional, x)
|
|
else:
|
|
query_mask, mask = None, None
|
|
|
|
# Encoder pre_network
|
|
x = self.encoder_prenet(x) #(N,T,C)
|
|
|
|
|
|
# Get positional encoding
|
|
positional = self.pos_emb(positional)
|
|
|
|
x = positional * self.alpha + x #(N, T, C)
|
|
|
|
|
|
# Positional dropout
|
|
x = layers.dropout(x, 0.1)
|
|
|
|
# Self attention encoder
|
|
attentions = list()
|
|
for layer, ffn in zip(self.layers, self.ffns):
|
|
x, attention = layer(x, x, x, mask = mask, query_mask = query_mask)
|
|
x = ffn(x)
|
|
attentions.append(attention)
|
|
|
|
return x, query_mask, attentions
|
|
|
|
class Decoder(dg.Layer):
|
|
def __init__(self, num_hidden, config, num_head=4):
|
|
super(Decoder, self).__init__()
|
|
self.num_hidden = num_hidden
|
|
param = fluid.ParamAttr()
|
|
self.alpha = self.create_parameter(shape=(1,), attr=param, dtype='float32',
|
|
default_initializer = fluid.initializer.ConstantInitializer(value=1.0))
|
|
self.pos_inp = get_sinusoid_encoding_table(1024, self.num_hidden, padding_idx=0)
|
|
self.pos_emb = dg.Embedding(size=[1024, num_hidden],
|
|
padding_idx=0,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.NumpyArrayInitializer(self.pos_inp),
|
|
trainable=False))
|
|
self.decoder_prenet = PreNet(input_size = config.audio.num_mels,
|
|
hidden_size = num_hidden * 2,
|
|
output_size = num_hidden,
|
|
dropout_rate=0.2)
|
|
self.linear = Linear(num_hidden, num_hidden)
|
|
|
|
self.selfattn_layers = [MultiheadAttention(num_hidden, num_hidden//num_head, num_hidden//num_head) for _ in range(3)]
|
|
for i, layer in enumerate(self.selfattn_layers):
|
|
self.add_sublayer("self_attn_{}".format(i), layer)
|
|
self.attn_layers = [MultiheadAttention(num_hidden, num_hidden//num_head, num_hidden//num_head) for _ in range(3)]
|
|
for i, layer in enumerate(self.attn_layers):
|
|
self.add_sublayer("attn_{}".format(i), layer)
|
|
self.ffns = [PositionwiseFeedForward(num_hidden, num_hidden*num_head, filter_size=1) for _ in range(3)]
|
|
for i, layer in enumerate(self.ffns):
|
|
self.add_sublayer("ffns_{}".format(i), layer)
|
|
self.mel_linear = Linear(num_hidden, config.audio.num_mels * config.audio.outputs_per_step)
|
|
self.stop_linear = Linear(num_hidden, 1)
|
|
|
|
self.postconvnet = PostConvNet(config.audio.num_mels, config.hidden_size,
|
|
filter_size = 5, padding = 4, num_conv=5,
|
|
outputs_per_step=config.audio.outputs_per_step,
|
|
use_cudnn = config.use_gpu)
|
|
|
|
def forward(self, key, value, query, c_mask, positional):
|
|
|
|
# get decoder mask with triangular matrix
|
|
|
|
if fluid.framework._dygraph_tracer()._train_mode:
|
|
m_mask = get_non_pad_mask(positional)
|
|
mask = get_attn_key_pad_mask((positional==0).astype(np.float32), query)
|
|
triu_tensor = dg.to_variable(get_triu_tensor(query.numpy(), query.numpy())).astype(np.float32)
|
|
mask = mask + triu_tensor
|
|
mask = fluid.layers.cast(mask == 0, np.float32)
|
|
|
|
# (batch_size, decoder_len, encoder_len)
|
|
zero_mask = get_attn_key_pad_mask(layers.squeeze(c_mask,[-1]), query)
|
|
else:
|
|
mask = get_triu_tensor(query.numpy(), query.numpy()).astype(np.float32)
|
|
mask = fluid.layers.cast(dg.to_variable(mask == 0), np.float32)
|
|
m_mask, zero_mask = None, None
|
|
|
|
# Decoder pre-network
|
|
query = self.decoder_prenet(query)
|
|
|
|
# Centered position
|
|
query = self.linear(query)
|
|
|
|
# Get position embedding
|
|
positional = self.pos_emb(positional)
|
|
query = positional * self.alpha + query
|
|
|
|
#positional dropout
|
|
query = fluid.layers.dropout(query, 0.1)
|
|
|
|
# Attention decoder-decoder, encoder-decoder
|
|
selfattn_list = list()
|
|
attn_list = list()
|
|
|
|
for selfattn, attn, ffn in zip(self.selfattn_layers, self.attn_layers, self.ffns):
|
|
query, attn_dec = selfattn(query, query, query, mask = mask, query_mask = m_mask)
|
|
query, attn_dot = attn(key, value, query, mask = zero_mask, query_mask = m_mask)
|
|
query = ffn(query)
|
|
selfattn_list.append(attn_dec)
|
|
attn_list.append(attn_dot)
|
|
# Mel linear projection
|
|
mel_out = self.mel_linear(query)
|
|
# Post Mel Network
|
|
out = self.postconvnet(mel_out)
|
|
out = mel_out + out
|
|
|
|
# Stop tokens
|
|
stop_tokens = self.stop_linear(query)
|
|
stop_tokens = layers.squeeze(stop_tokens, [-1])
|
|
stop_tokens = layers.sigmoid(stop_tokens)
|
|
|
|
return mel_out, out, attn_list, stop_tokens, selfattn_list
|
|
|
|
class TransformerTTS(dg.Layer):
|
|
def __init__(self, config):
|
|
super(TransformerTTS, self).__init__()
|
|
self.encoder = Encoder(config.embedding_size, config.hidden_size, config)
|
|
self.decoder = Decoder(config.hidden_size, config)
|
|
self.config = config
|
|
|
|
def forward(self, characters, mel_input, pos_text, pos_mel):
|
|
# key (batch_size, seq_len, channel)
|
|
# c_mask (batch_size, seq_len)
|
|
# attns_enc (channel / 2, seq_len, seq_len)
|
|
|
|
key, c_mask, attns_enc = self.encoder(characters, pos_text)
|
|
|
|
# mel_output/postnet_output (batch_size, mel_len, n_mel)
|
|
# attn_probs (128, mel_len, seq_len)
|
|
# stop_preds (batch_size, mel_len, 1)
|
|
# attns_dec (128, mel_len, mel_len)
|
|
mel_output, postnet_output, attn_probs, stop_preds, attns_dec = self.decoder(key, key, mel_input, c_mask, pos_mel)
|
|
|
|
return mel_output, postnet_output, attn_probs, stop_preds, attns_enc, attns_dec
|
|
|
|
class ModelPostNet(dg.Layer):
|
|
"""
|
|
CBHG Network (mel -> linear)
|
|
"""
|
|
def __init__(self, config):
|
|
super(ModelPostNet, self).__init__()
|
|
self.pre_proj = Conv1D(in_channels = config.audio.num_mels,
|
|
out_channels = config.hidden_size,
|
|
filter_size=1,
|
|
data_format = "NCT")
|
|
self.cbhg = CBHG(config.hidden_size, config.batch_size)
|
|
self.post_proj = Conv1D(in_channels = config.hidden_size,
|
|
out_channels = (config.audio.n_fft // 2) + 1,
|
|
filter_size=1,
|
|
data_format = "NCT")
|
|
|
|
def forward(self, mel):
|
|
mel = layers.transpose(mel, [0,2,1])
|
|
mel = self.pre_proj(mel)
|
|
mel = self.cbhg(mel)
|
|
mag_pred = self.post_proj(mel)
|
|
mag_pred = layers.transpose(mag_pred, [0,2,1])
|
|
return mag_pred
|
|
|
|
|
|
|
|
|
|
|
|
|