ParakeetRebeccaRosario/examples/tacotron2_aishell3/train.py

264 lines
9.6 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from pathlib import Path
from collections import defaultdict
import numpy as np
from matplotlib import pyplot as plt
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader, DistributedBatchSampler
from parakeet.data import dataset
from parakeet.training.cli import default_argument_parser
from parakeet.training.experiment import ExperimentBase
from parakeet.utils import display, mp_tools
from parakeet.models.tacotron2 import Tacotron2, Tacotron2Loss
from config import get_cfg_defaults
from aishell3 import AiShell3, collate_aishell3_examples
class Experiment(ExperimentBase):
def compute_losses(self, inputs, outputs):
texts, tones, mel_targets, utterance_embeds, text_lens, output_lens, stop_tokens = inputs
mel_outputs = outputs["mel_output"]
mel_outputs_postnet = outputs["mel_outputs_postnet"]
alignments = outputs["alignments"]
losses = self.criterion(mel_outputs, mel_outputs_postnet, mel_targets,
alignments, output_lens, text_lens)
return losses
def train_batch(self):
start = time.time()
batch = self.read_batch()
data_loader_time = time.time() - start
self.optimizer.clear_grad()
self.model.train()
texts, tones, mels, utterance_embeds, text_lens, output_lens, stop_tokens = batch
outputs = self.model(
texts,
text_lens,
mels,
output_lens,
tones=tones,
global_condition=utterance_embeds)
losses = self.compute_losses(batch, outputs)
loss = losses["loss"]
loss.backward()
self.optimizer.step()
iteration_time = time.time() - start
losses_np = {k: float(v) for k, v in losses.items()}
# logging
msg = "Rank: {}, ".format(dist.get_rank())
msg += "step: {}, ".format(self.iteration)
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time,
iteration_time)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_np.items())
self.logger.info(msg)
if dist.get_rank() == 0:
for key, value in losses_np.items():
self.visualizer.add_scalar(f"train_loss/{key}", value,
self.iteration)
@mp_tools.rank_zero_only
@paddle.no_grad()
def valid(self):
valid_losses = defaultdict(list)
for i, batch in enumerate(self.valid_loader):
texts, tones, mels, utterance_embeds, text_lens, output_lens, stop_tokens = batch
outputs = self.model(
texts,
text_lens,
mels,
output_lens,
tones=tones,
global_condition=utterance_embeds)
losses = self.compute_losses(batch, outputs)
for key, value in losses.items():
valid_losses[key].append(float(value))
attention_weights = outputs["alignments"]
self.visualizer.add_figure(
f"valid_sentence_{i}_alignments",
display.plot_alignment(attention_weights[0].numpy().T),
self.iteration)
self.visualizer.add_figure(
f"valid_sentence_{i}_target_spectrogram",
display.plot_spectrogram(mels[0].numpy().T), self.iteration)
mel_pred = outputs['mel_outputs_postnet']
self.visualizer.add_figure(
f"valid_sentence_{i}_predicted_spectrogram",
display.plot_spectrogram(mel_pred[0].numpy().T),
self.iteration)
# write visual log
valid_losses = {k: np.mean(v) for k, v in valid_losses.items()}
# logging
msg = "Valid: "
msg += "step: {}, ".format(self.iteration)
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in valid_losses.items())
self.logger.info(msg)
for key, value in valid_losses.items():
self.visualizer.add_scalar(f"valid/{key}", value, self.iteration)
@mp_tools.rank_zero_only
@paddle.no_grad()
def eval(self):
"""Evaluation of Tacotron2 in autoregressive manner."""
self.model.eval()
mel_dir = Path(self.output_dir / ("eval_{}".format(self.iteration)))
mel_dir.mkdir(parents=True, exist_ok=True)
for i, batch in enumerate(self.test_loader):
texts, tones, mels, utterance_embeds, *_ = batch
outputs = self.model.infer(
texts, tones=tones, global_condition=utterance_embeds)
display.plot_alignment(outputs["alignments"][0].numpy().T)
plt.savefig(mel_dir / f"sentence_{i}.png")
plt.close()
np.save(mel_dir / f"sentence_{i}",
outputs["mel_outputs_postnet"][0].numpy().T)
print(f"sentence_{i}")
def setup_model(self):
config = self.config
model = Tacotron2(
vocab_size=config.model.vocab_size,
n_tones=config.model.n_tones,
d_mels=config.data.d_mels,
d_encoder=config.model.d_encoder,
encoder_conv_layers=config.model.encoder_conv_layers,
encoder_kernel_size=config.model.encoder_kernel_size,
d_prenet=config.model.d_prenet,
d_attention_rnn=config.model.d_attention_rnn,
d_decoder_rnn=config.model.d_decoder_rnn,
attention_filters=config.model.attention_filters,
attention_kernel_size=config.model.attention_kernel_size,
d_attention=config.model.d_attention,
d_postnet=config.model.d_postnet,
postnet_kernel_size=config.model.postnet_kernel_size,
postnet_conv_layers=config.model.postnet_conv_layers,
reduction_factor=config.model.reduction_factor,
p_encoder_dropout=config.model.p_encoder_dropout,
p_prenet_dropout=config.model.p_prenet_dropout,
p_attention_dropout=config.model.p_attention_dropout,
p_decoder_dropout=config.model.p_decoder_dropout,
p_postnet_dropout=config.model.p_postnet_dropout,
d_global_condition=config.model.d_global_condition,
use_stop_token=config.model.use_stop_token, )
if self.parallel:
model = paddle.DataParallel(model)
grad_clip = paddle.nn.ClipGradByGlobalNorm(
config.training.grad_clip_thresh)
optimizer = paddle.optimizer.Adam(
learning_rate=config.training.lr,
parameters=model.parameters(),
weight_decay=paddle.regularizer.L2Decay(
config.training.weight_decay),
grad_clip=grad_clip)
criterion = Tacotron2Loss(
use_stop_token_loss=config.model.use_stop_token,
use_guided_attention_loss=config.model.use_guided_attention_loss,
sigma=config.model.guided_attention_loss_sigma)
self.model = model
self.optimizer = optimizer
self.criterion = criterion
def setup_dataloader(self):
args = self.args
config = self.config
ljspeech_dataset = AiShell3(args.data)
valid_set, train_set = dataset.split(ljspeech_dataset,
config.data.valid_size)
batch_fn = collate_aishell3_examples
if not self.parallel:
self.train_loader = DataLoader(
train_set,
batch_size=config.data.batch_size,
shuffle=True,
drop_last=True,
collate_fn=batch_fn)
else:
sampler = DistributedBatchSampler(
train_set,
batch_size=config.data.batch_size,
shuffle=True,
drop_last=True)
self.train_loader = DataLoader(
train_set, batch_sampler=sampler, collate_fn=batch_fn)
self.valid_loader = DataLoader(
valid_set,
batch_size=config.data.batch_size,
shuffle=False,
drop_last=False,
collate_fn=batch_fn)
self.test_loader = DataLoader(
valid_set,
batch_size=1,
shuffle=False,
drop_last=False,
collate_fn=batch_fn)
def main_sp(config, args):
exp = Experiment(config, args)
exp.setup()
exp.resume_or_load()
if not args.test:
exp.run()
else:
exp.eval()
def main(config, args):
if args.nprocs > 1 and args.device == "gpu":
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
else:
main_sp(config, args)
if __name__ == "__main__":
config = get_cfg_defaults()
parser = default_argument_parser()
parser.add_argument("--test", action="store_true")
args = parser.parse_args()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
print(args)
main(config, args)