ParakeetRebeccaRosario/parakeet/models/parallel_wavegan.py

439 lines
15 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F
class Stretch2D(nn.Layer):
def __init__(self, x_scale, y_scale, mode="nearest"):
super().__init__()
self.x_scale = x_scale
self.y_scale = y_scale
self.mode = mode
def forward(self, x):
out = F.interpolate(
x, scale_factor=(self.y_scale, self.x_scale), mode=self.mode)
return out
class UpsampleNet(nn.Layer):
def __init__(self,
upsample_scales,
nonlinear_activation=None,
nonlinear_activation_params={},
interpolate_mode="nearest",
freq_axis_kernel_size=1,
use_causal_conv=False):
super().__init__()
self.use_causal_conv = use_causal_conv
self.up_layers = nn.LayerList()
for scale in upsample_scales:
stretch = Stretch2D(scale, 1, interpolate_mode)
assert freq_axis_kernel_size % 2 == 1
freq_axis_padding = (freq_axis_kernel_size - 1) // 2
kernel_size = (freq_axis_kernel_size, scale * 2 + 1)
if use_causal_conv:
padding = (freq_axis_padding, scale * 2)
else:
padding = (freq_axis_padding, scale)
conv = nn.Conv2D(
1, 1, kernel_size, padding=padding, bias_attr=False)
if nonlinear_activation is not None:
nonlinear = getattr(
nn, nonlinear_activation)(**nonlinear_activation_params)
self.up_layers.extend([stretch, conv, nonlinear])
def forward(self, c):
c = c.unsqueeze(1)
for f in self.up_layers:
if self.use_causal_conv and isinstance(f, nn.Conv2D):
c = f(c)[:, :, :, c.shape[-1]]
else:
c = f(c)
return c.squeeze(1)
class ConvInUpsampleNet(nn.Layer):
def __init__(self,
upsample_scales,
nonlinear_activation=None,
nonlinear_activation_params={},
interpolate_mode="nearest",
freq_axis_kernel_size=1,
aux_channels=80,
aux_context_window=0,
use_causal_conv=False):
super().__init__()
self.aux_context_window = aux_context_window
self.use_causal_conv = use_causal_conv and aux_context_window > 0
kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1
self.conv_in = nn.Conv1D(
aux_channels,
aux_channels,
kernel_size=kernel_size,
bias_attr=False)
self.upsample = UpsampleNet(
upsample_scales=upsample_scales,
nonlinear_activation=nonlinear_activation,
nonlinear_activation_params=nonlinear_activation_params,
interpolate_mode=interpolate_mode,
freq_axis_kernel_size=freq_axis_kernel_size,
use_causal_conv=use_causal_conv)
def forward(self, c):
c_ = self.conv_in(c)
c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_
return self.upsample(c)
class ResidualBlock(nn.Layer):
def __init__(self,
kernel_size=3,
residual_channels=64,
gate_channels=128,
skip_channels=64,
aux_channels=80,
dropout=0.,
dilation=1,
bias=True,
use_causal_conv=False):
super().__init__()
self.dropout = dropout
if use_causal_conv:
padding = (kernel_size - 1) * dilation
else:
assert kernel_size % 2 == 1
padding = (kernel_size - 1) // 2 * dilation
self.use_causal_conv = use_causal_conv
self.conv = nn.Conv1D(
residual_channels,
gate_channels,
kernel_size,
padding=padding,
dilation=dilation,
bias_attr=bias)
if aux_channels is not None:
self.conv1x1_aux = nn.Conv1D(
aux_channels, gate_channels, kernel_size=1, bias_attr=False)
else:
self.conv1x1_aux = None
gate_out_channels = gate_channels // 2
self.conv1x1_out = nn.Conv1D(
gate_out_channels,
residual_channels,
kernel_size=1,
bias_attr=bias)
self.conv1x1_skip = nn.Conv1D(
gate_out_channels, skip_channels, kernel_size=1, bias_attr=bias)
def forward(self, x, c):
x_input = x
x = F.dropout(x, self.dropout, training=self.training)
x = self.conv(x)
x = x[:, :, x_input.shape[-1]] if self.use_causal_conv else x
if c is not None:
c = self.conv1x1_aux(c)
x += c
a, b = paddle.chunk(x, 2, axis=1)
x = paddle.tanh(a) * F.sigmoid(b)
skip = self.conv1x1_skip(x)
res = (self.conv1x1_out(x) + x_input) * math.sqrt(0.5)
return res, skip
class PWGGenerator(nn.Layer):
def __init__(self,
in_channels=1,
out_channels=1,
kernel_size=3,
layers=30,
stacks=3,
residual_channels=64,
gate_channels=128,
skip_channels=64,
aux_channels=80,
aux_context_window=2,
dropout=0.,
bias=True,
use_weight_norm=True,
use_causal_conv=False,
upsample_scales=[4, 4, 4, 4],
nonlinear_activation=None,
nonlinear_activation_params={},
interpolate_mode="nearest",
freq_axis_kernel_size=1):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.aux_channels = aux_channels
self.aux_context_window = aux_context_window
self.layers = layers
self.stacks = stacks
self.kernel_size = kernel_size
assert layers % stacks == 0
layers_per_stack = layers // stacks
self.first_conv = nn.Conv1D(
in_channels, residual_channels, 1, bias_attr=True)
self.upsample_net = ConvInUpsampleNet(
upsample_scales=upsample_scales,
nonlinear_activation=nonlinear_activation,
nonlinear_activation_params=nonlinear_activation_params,
interpolate_mode=interpolate_mode,
freq_axis_kernel_size=freq_axis_kernel_size,
aux_channels=aux_channels,
aux_context_window=aux_context_window,
use_causal_conv=use_causal_conv)
self.upsample_factor = np.prod(upsample_scales)
self.conv_layers = nn.LayerList()
for layer in range(layers):
dilation = 2**(layer % layers_per_stack)
conv = ResidualBlock(
kernel_size=kernel_size,
residual_channels=residual_channels,
gate_channels=gate_channels,
skip_channels=skip_channels,
aux_channels=aux_channels,
dilation=dilation,
dropout=dropout,
bias=bias,
use_causal_conv=use_causal_conv)
self.conv_layers.append(conv)
self.last_conv_layers = nn.Sequential(
nn.ReLU(),
nn.Conv1D(
skip_channels, skip_channels, 1, bias_attr=True),
nn.ReLU(),
nn.Conv1D(
skip_channels, out_channels, 1, bias_attr=True))
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x, c):
if c is not None:
c = self.upsample_net(c)
assert c.shape[-1] == x.shape[-1]
x = self.first_conv(x)
skips = 0
for f in self.conv_layers:
x, s = f(x, c)
skips += s
skips *= math.sqrt(1.0 / len(self.conv_layers))
x = self.last_conv_layers(skips)
return x
def apply_weight_norm(self):
def _apply_weight_norm(layer):
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
nn.utils.weight_norm(layer)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
def _remove_weight_norm(layer):
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
pass
self.apply(_remove_weight_norm)
def inference(self, c=None, x=None):
"""
single instance inference
c: [T', C] condition
x: [T, 1] noise
"""
if x is not None:
x = paddle.transpose(x, [1, 0]).unsqueeze(0) # pseudo batch
else:
assert c is not None
x = paddle.randn([1, 1, c.shape[0] * self.upsample_factor])
if c is not None:
c = paddle.transpose(c, [1, 0]).unsqueeze(0) # pseudo batch
c = nn.Pad1D(self.aux_context_window, mode='edge')(c)
out = self.forward(x, c).squeeze(0).transpose([1, 0])
return out
class PWGDiscriminator(nn.Layer):
def __init__(self,
in_channels=1,
out_channels=1,
kernel_size=3,
layers=10,
conv_channels=64,
dilation_factor=1,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.2},
bias=True,
use_weight_norm=True):
super().__init__()
assert kernel_size % 2 == 1
assert dilation_factor > 0
conv_layers = []
conv_in_channels = in_channels
for i in range(layers - 1):
if i == 0:
dilation = 1
else:
dilation = i if dilation_factor == 1 else dilation_factor**i
conv_in_channels = conv_channels
padding = (kernel_size - 1) // 2 * dilation
conv_layer = nn.Conv1D(
conv_in_channels,
conv_channels,
kernel_size,
padding=padding,
dilation=dilation,
bias_attr=bias)
nonlinear = getattr(
nn, nonlinear_activation)(**nonlinear_activation_params)
conv_layers.append(conv_layer)
conv_layers.append(nonlinear)
padding = (kernel_size - 1) // 2
last_conv = nn.Conv1D(
conv_in_channels,
out_channels,
kernel_size,
padding=padding,
bias_attr=bias)
conv_layers.append(last_conv)
self.conv_layers = nn.Sequential(*conv_layers)
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x):
return self.conv_layers(x)
def apply_weight_norm(self):
def _apply_weight_norm(layer):
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
nn.utils.weight_norm(layer)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
def _remove_weight_norm(layer):
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
pass
self.apply(_remove_weight_norm)
class ResidualPWGDiscriminator(nn.Layer):
def __init__(self,
in_channels=1,
out_channels=1,
kernel_size=3,
layers=30,
stacks=3,
residual_channels=64,
gate_channels=128,
skip_channels=64,
dropout=0.,
bias=True,
use_weight_norm=True,
use_causal_conv=False,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.2}):
super().__init__()
assert kernel_size % 2 == 1
self.in_channels = in_channels
self.out_channels = out_channels
self.layers = layers
self.stacks = stacks
self.kernel_size = kernel_size
assert layers % stacks == 0
layers_per_stack = layers // stacks
self.first_conv = nn.Sequential(
nn.Conv1D(
in_channels, residual_channels, 1, bias_attr=True),
getattr(nn, nonlinear_activation)(**nonlinear_activation_params))
self.conv_layers = nn.LayerList()
for layer in range(layers):
dilation = 2**(layer % layers_per_stack)
conv = ResidualBlock(
kernel_size=kernel_size,
residual_channels=residual_channels,
gate_channels=gate_channels,
skip_channels=skip_channels,
aux_channels=None, # no auxiliary input
dropout=dropout,
dilation=dilation,
bias=bias,
use_causal_conv=use_causal_conv)
self.conv_layers.append(conv)
self.last_conv_layers = nn.Sequential(
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
nn.Conv1D(
skip_channels, skip_channels, 1, bias_attr=True),
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
nn.Conv1D(
skip_channels, out_channels, 1, bias_attr=True))
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x):
x = self.first_conv(x)
skip = 0
for f in self.conv_layers:
x, h = f(x, None)
skip += h
skip *= math.sqrt(1 / len(self.conv_layers))
x = skip
x = self.last_conv_layers(x)
return x
def apply_weight_norm(self):
def _apply_weight_norm(layer):
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
nn.utils.weight_norm(layer)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
def _remove_weight_norm(layer):
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
pass
self.apply(_remove_weight_norm)