439 lines
15 KiB
Python
439 lines
15 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import math
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.nn import functional as F
|
|
|
|
|
|
class Stretch2D(nn.Layer):
|
|
def __init__(self, x_scale, y_scale, mode="nearest"):
|
|
super().__init__()
|
|
self.x_scale = x_scale
|
|
self.y_scale = y_scale
|
|
self.mode = mode
|
|
|
|
def forward(self, x):
|
|
out = F.interpolate(
|
|
x, scale_factor=(self.y_scale, self.x_scale), mode=self.mode)
|
|
return out
|
|
|
|
|
|
class UpsampleNet(nn.Layer):
|
|
def __init__(self,
|
|
upsample_scales,
|
|
nonlinear_activation=None,
|
|
nonlinear_activation_params={},
|
|
interpolate_mode="nearest",
|
|
freq_axis_kernel_size=1,
|
|
use_causal_conv=False):
|
|
super().__init__()
|
|
self.use_causal_conv = use_causal_conv
|
|
self.up_layers = nn.LayerList()
|
|
for scale in upsample_scales:
|
|
stretch = Stretch2D(scale, 1, interpolate_mode)
|
|
assert freq_axis_kernel_size % 2 == 1
|
|
freq_axis_padding = (freq_axis_kernel_size - 1) // 2
|
|
kernel_size = (freq_axis_kernel_size, scale * 2 + 1)
|
|
if use_causal_conv:
|
|
padding = (freq_axis_padding, scale * 2)
|
|
else:
|
|
padding = (freq_axis_padding, scale)
|
|
conv = nn.Conv2D(
|
|
1, 1, kernel_size, padding=padding, bias_attr=False)
|
|
if nonlinear_activation is not None:
|
|
nonlinear = getattr(
|
|
nn, nonlinear_activation)(**nonlinear_activation_params)
|
|
self.up_layers.extend([stretch, conv, nonlinear])
|
|
|
|
def forward(self, c):
|
|
c = c.unsqueeze(1)
|
|
for f in self.up_layers:
|
|
if self.use_causal_conv and isinstance(f, nn.Conv2D):
|
|
c = f(c)[:, :, :, c.shape[-1]]
|
|
else:
|
|
c = f(c)
|
|
return c.squeeze(1)
|
|
|
|
|
|
class ConvInUpsampleNet(nn.Layer):
|
|
def __init__(self,
|
|
upsample_scales,
|
|
nonlinear_activation=None,
|
|
nonlinear_activation_params={},
|
|
interpolate_mode="nearest",
|
|
freq_axis_kernel_size=1,
|
|
aux_channels=80,
|
|
aux_context_window=0,
|
|
use_causal_conv=False):
|
|
super().__init__()
|
|
self.aux_context_window = aux_context_window
|
|
self.use_causal_conv = use_causal_conv and aux_context_window > 0
|
|
kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1
|
|
self.conv_in = nn.Conv1D(
|
|
aux_channels,
|
|
aux_channels,
|
|
kernel_size=kernel_size,
|
|
bias_attr=False)
|
|
self.upsample = UpsampleNet(
|
|
upsample_scales=upsample_scales,
|
|
nonlinear_activation=nonlinear_activation,
|
|
nonlinear_activation_params=nonlinear_activation_params,
|
|
interpolate_mode=interpolate_mode,
|
|
freq_axis_kernel_size=freq_axis_kernel_size,
|
|
use_causal_conv=use_causal_conv)
|
|
|
|
def forward(self, c):
|
|
c_ = self.conv_in(c)
|
|
c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_
|
|
return self.upsample(c)
|
|
|
|
|
|
class ResidualBlock(nn.Layer):
|
|
def __init__(self,
|
|
kernel_size=3,
|
|
residual_channels=64,
|
|
gate_channels=128,
|
|
skip_channels=64,
|
|
aux_channels=80,
|
|
dropout=0.,
|
|
dilation=1,
|
|
bias=True,
|
|
use_causal_conv=False):
|
|
super().__init__()
|
|
self.dropout = dropout
|
|
if use_causal_conv:
|
|
padding = (kernel_size - 1) * dilation
|
|
else:
|
|
assert kernel_size % 2 == 1
|
|
padding = (kernel_size - 1) // 2 * dilation
|
|
self.use_causal_conv = use_causal_conv
|
|
|
|
self.conv = nn.Conv1D(
|
|
residual_channels,
|
|
gate_channels,
|
|
kernel_size,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
bias_attr=bias)
|
|
if aux_channels is not None:
|
|
self.conv1x1_aux = nn.Conv1D(
|
|
aux_channels, gate_channels, kernel_size=1, bias_attr=False)
|
|
else:
|
|
self.conv1x1_aux = None
|
|
|
|
gate_out_channels = gate_channels // 2
|
|
self.conv1x1_out = nn.Conv1D(
|
|
gate_out_channels,
|
|
residual_channels,
|
|
kernel_size=1,
|
|
bias_attr=bias)
|
|
self.conv1x1_skip = nn.Conv1D(
|
|
gate_out_channels, skip_channels, kernel_size=1, bias_attr=bias)
|
|
|
|
def forward(self, x, c):
|
|
x_input = x
|
|
x = F.dropout(x, self.dropout, training=self.training)
|
|
x = self.conv(x)
|
|
x = x[:, :, x_input.shape[-1]] if self.use_causal_conv else x
|
|
if c is not None:
|
|
c = self.conv1x1_aux(c)
|
|
x += c
|
|
|
|
a, b = paddle.chunk(x, 2, axis=1)
|
|
x = paddle.tanh(a) * F.sigmoid(b)
|
|
|
|
skip = self.conv1x1_skip(x)
|
|
res = (self.conv1x1_out(x) + x_input) * math.sqrt(0.5)
|
|
return res, skip
|
|
|
|
|
|
class PWGGenerator(nn.Layer):
|
|
def __init__(self,
|
|
in_channels=1,
|
|
out_channels=1,
|
|
kernel_size=3,
|
|
layers=30,
|
|
stacks=3,
|
|
residual_channels=64,
|
|
gate_channels=128,
|
|
skip_channels=64,
|
|
aux_channels=80,
|
|
aux_context_window=2,
|
|
dropout=0.,
|
|
bias=True,
|
|
use_weight_norm=True,
|
|
use_causal_conv=False,
|
|
upsample_scales=[4, 4, 4, 4],
|
|
nonlinear_activation=None,
|
|
nonlinear_activation_params={},
|
|
interpolate_mode="nearest",
|
|
freq_axis_kernel_size=1):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.aux_channels = aux_channels
|
|
self.aux_context_window = aux_context_window
|
|
self.layers = layers
|
|
self.stacks = stacks
|
|
self.kernel_size = kernel_size
|
|
|
|
assert layers % stacks == 0
|
|
layers_per_stack = layers // stacks
|
|
|
|
self.first_conv = nn.Conv1D(
|
|
in_channels, residual_channels, 1, bias_attr=True)
|
|
self.upsample_net = ConvInUpsampleNet(
|
|
upsample_scales=upsample_scales,
|
|
nonlinear_activation=nonlinear_activation,
|
|
nonlinear_activation_params=nonlinear_activation_params,
|
|
interpolate_mode=interpolate_mode,
|
|
freq_axis_kernel_size=freq_axis_kernel_size,
|
|
aux_channels=aux_channels,
|
|
aux_context_window=aux_context_window,
|
|
use_causal_conv=use_causal_conv)
|
|
self.upsample_factor = np.prod(upsample_scales)
|
|
|
|
self.conv_layers = nn.LayerList()
|
|
for layer in range(layers):
|
|
dilation = 2**(layer % layers_per_stack)
|
|
conv = ResidualBlock(
|
|
kernel_size=kernel_size,
|
|
residual_channels=residual_channels,
|
|
gate_channels=gate_channels,
|
|
skip_channels=skip_channels,
|
|
aux_channels=aux_channels,
|
|
dilation=dilation,
|
|
dropout=dropout,
|
|
bias=bias,
|
|
use_causal_conv=use_causal_conv)
|
|
self.conv_layers.append(conv)
|
|
|
|
self.last_conv_layers = nn.Sequential(
|
|
nn.ReLU(),
|
|
nn.Conv1D(
|
|
skip_channels, skip_channels, 1, bias_attr=True),
|
|
nn.ReLU(),
|
|
nn.Conv1D(
|
|
skip_channels, out_channels, 1, bias_attr=True))
|
|
|
|
if use_weight_norm:
|
|
self.apply_weight_norm()
|
|
|
|
def forward(self, x, c):
|
|
if c is not None:
|
|
c = self.upsample_net(c)
|
|
assert c.shape[-1] == x.shape[-1]
|
|
|
|
x = self.first_conv(x)
|
|
skips = 0
|
|
for f in self.conv_layers:
|
|
x, s = f(x, c)
|
|
skips += s
|
|
skips *= math.sqrt(1.0 / len(self.conv_layers))
|
|
|
|
x = self.last_conv_layers(skips)
|
|
return x
|
|
|
|
def apply_weight_norm(self):
|
|
def _apply_weight_norm(layer):
|
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
|
nn.utils.weight_norm(layer)
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
def remove_weight_norm(self):
|
|
def _remove_weight_norm(layer):
|
|
try:
|
|
nn.utils.remove_weight_norm(layer)
|
|
except ValueError:
|
|
pass
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
def inference(self, c=None, x=None):
|
|
"""
|
|
single instance inference
|
|
c: [T', C] condition
|
|
x: [T, 1] noise
|
|
"""
|
|
if x is not None:
|
|
x = paddle.transpose(x, [1, 0]).unsqueeze(0) # pseudo batch
|
|
else:
|
|
assert c is not None
|
|
x = paddle.randn([1, 1, c.shape[0] * self.upsample_factor])
|
|
|
|
if c is not None:
|
|
c = paddle.transpose(c, [1, 0]).unsqueeze(0) # pseudo batch
|
|
c = nn.Pad1D(self.aux_context_window, mode='edge')(c)
|
|
out = self.forward(x, c).squeeze(0).transpose([1, 0])
|
|
return out
|
|
|
|
|
|
class PWGDiscriminator(nn.Layer):
|
|
def __init__(self,
|
|
in_channels=1,
|
|
out_channels=1,
|
|
kernel_size=3,
|
|
layers=10,
|
|
conv_channels=64,
|
|
dilation_factor=1,
|
|
nonlinear_activation="LeakyReLU",
|
|
nonlinear_activation_params={"negative_slope": 0.2},
|
|
bias=True,
|
|
use_weight_norm=True):
|
|
super().__init__()
|
|
assert kernel_size % 2 == 1
|
|
assert dilation_factor > 0
|
|
conv_layers = []
|
|
conv_in_channels = in_channels
|
|
for i in range(layers - 1):
|
|
if i == 0:
|
|
dilation = 1
|
|
else:
|
|
dilation = i if dilation_factor == 1 else dilation_factor**i
|
|
conv_in_channels = conv_channels
|
|
padding = (kernel_size - 1) // 2 * dilation
|
|
conv_layer = nn.Conv1D(
|
|
conv_in_channels,
|
|
conv_channels,
|
|
kernel_size,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
bias_attr=bias)
|
|
nonlinear = getattr(
|
|
nn, nonlinear_activation)(**nonlinear_activation_params)
|
|
conv_layers.append(conv_layer)
|
|
conv_layers.append(nonlinear)
|
|
padding = (kernel_size - 1) // 2
|
|
last_conv = nn.Conv1D(
|
|
conv_in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
padding=padding,
|
|
bias_attr=bias)
|
|
conv_layers.append(last_conv)
|
|
self.conv_layers = nn.Sequential(*conv_layers)
|
|
|
|
if use_weight_norm:
|
|
self.apply_weight_norm()
|
|
|
|
def forward(self, x):
|
|
return self.conv_layers(x)
|
|
|
|
def apply_weight_norm(self):
|
|
def _apply_weight_norm(layer):
|
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
|
nn.utils.weight_norm(layer)
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
def remove_weight_norm(self):
|
|
def _remove_weight_norm(layer):
|
|
try:
|
|
nn.utils.remove_weight_norm(layer)
|
|
except ValueError:
|
|
pass
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
|
|
class ResidualPWGDiscriminator(nn.Layer):
|
|
def __init__(self,
|
|
in_channels=1,
|
|
out_channels=1,
|
|
kernel_size=3,
|
|
layers=30,
|
|
stacks=3,
|
|
residual_channels=64,
|
|
gate_channels=128,
|
|
skip_channels=64,
|
|
dropout=0.,
|
|
bias=True,
|
|
use_weight_norm=True,
|
|
use_causal_conv=False,
|
|
nonlinear_activation="LeakyReLU",
|
|
nonlinear_activation_params={"negative_slope": 0.2}):
|
|
super().__init__()
|
|
assert kernel_size % 2 == 1
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.layers = layers
|
|
self.stacks = stacks
|
|
self.kernel_size = kernel_size
|
|
|
|
assert layers % stacks == 0
|
|
layers_per_stack = layers // stacks
|
|
|
|
self.first_conv = nn.Sequential(
|
|
nn.Conv1D(
|
|
in_channels, residual_channels, 1, bias_attr=True),
|
|
getattr(nn, nonlinear_activation)(**nonlinear_activation_params))
|
|
|
|
self.conv_layers = nn.LayerList()
|
|
for layer in range(layers):
|
|
dilation = 2**(layer % layers_per_stack)
|
|
conv = ResidualBlock(
|
|
kernel_size=kernel_size,
|
|
residual_channels=residual_channels,
|
|
gate_channels=gate_channels,
|
|
skip_channels=skip_channels,
|
|
aux_channels=None, # no auxiliary input
|
|
dropout=dropout,
|
|
dilation=dilation,
|
|
bias=bias,
|
|
use_causal_conv=use_causal_conv)
|
|
self.conv_layers.append(conv)
|
|
|
|
self.last_conv_layers = nn.Sequential(
|
|
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
|
|
nn.Conv1D(
|
|
skip_channels, skip_channels, 1, bias_attr=True),
|
|
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
|
|
nn.Conv1D(
|
|
skip_channels, out_channels, 1, bias_attr=True))
|
|
|
|
if use_weight_norm:
|
|
self.apply_weight_norm()
|
|
|
|
def forward(self, x):
|
|
x = self.first_conv(x)
|
|
skip = 0
|
|
for f in self.conv_layers:
|
|
x, h = f(x, None)
|
|
skip += h
|
|
skip *= math.sqrt(1 / len(self.conv_layers))
|
|
|
|
x = skip
|
|
x = self.last_conv_layers(x)
|
|
return x
|
|
|
|
def apply_weight_norm(self):
|
|
def _apply_weight_norm(layer):
|
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
|
nn.utils.weight_norm(layer)
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
def remove_weight_norm(self):
|
|
def _remove_weight_norm(layer):
|
|
try:
|
|
nn.utils.remove_weight_norm(layer)
|
|
except ValueError:
|
|
pass
|
|
|
|
self.apply(_remove_weight_norm)
|